一.高斯消元求解线性方程组
1. 问题: m × ( n + 1 ) m\times(n+1) m×(n+1)描述一个 n元线性方程组方程式,Rij为第 i 个方程未知数 xj 的系数,求解未知数 x1->xn
- 如果是我们人,我们自然会消元法来消元,通过将某个多元一次方程化为一元一次方程,求出结果。
2.方法:高斯消元的转化形式
- 我们定义第i行(第i个方程)为Ri,那么消元的过程就相当于以下三种操作:
- 1.交换Ri与Rj
- 2.Ri乘以常数k
- 3.Ri加上(Rj乘以常数k)
其实就是线性代数中的初等行变化 - 高斯消元的思路就是化为以下形式的矩阵(首非0元为1的阶梯矩阵)
[ 1 a b c 0 1 d e 0 0 1 g ] \begin{bmatrix} 1 & a & b &c\\ 0 &1 &d &e \\ 0 & 0 &1 &g \\ \end{bmatrix} ⎣⎡100a10bd1ceg⎦⎤
- 这样就可以倒着回代求出所有解了
3.高斯-约旦消元
[ 1 0 0 a 0 1 0 b 0 0 1 c ] \begin{bmatrix} 1 & 0 & 0 &a\\ 0 &1 &0 &b \\ 0 & 0 &1 &c \\ \end{bmatrix} ⎣⎡100010001abc⎦⎤
- 要是能转化成这种形式,那就能避免回带了
4.如何转化成该形式???
步骤如下:
- 0.用 m 个方程解 n 个未知数,方程下标为 [ 1 , m ] [1,m] [1,m];解下标为 [ 1 , n ] [1,n] [1,n],n+1为等号右边数字的下标
- 1.一列一列处理,在用第 h 个方程处理第 i 个未知数
- 2.在未处理行中找到一个第 i 列为非 0 元素的行,并将其置换到第 h 行
- 3.将第 h 行第 i 列元素更改为 1 ,并修改行中的其他元素
- 4.用第 h 行第 i 列的 1 把其他行的第 i 列非 0 元素均变为 0
- 5.234成功后,表示第 h 个方程成功处理了第 i 个未知数,则 h++
- 6.结束后,表示用了 h-1 个方程解 n 个未知数 。
注意事项
- 【注意】由于过程中会损失精度,所以我们通常会给定一个精度eps,当元素值小于eps时,将其视为 0
解的情况(无解,多解,自由元)
- 问: 求 n 元解需要多少个线性方程呢?
- 答: 最多需要 n 个,但不是前 n 个方程,而是置换后的前 n 个。倘若处理完 n 个未知数了,而只使用了 h-1(h-1<n)个方程,那么该方程组可能要出现无解或者多解了。
- 问: 什么时候只使用了 h-1(h-1<n)个方程?
- 答: 步骤 2 在未处理行中找不到一个第 i 列元素为非 0 的行。
- 那么它就会变成类似下面这个式子:(可以看到在处理 x3 时,没有找到一个非0行与其置换)
- [ 1 0 e 0 a 0 1 d 0 b 0 0 0 1 c 0 0 0 0 p ] \begin{bmatrix} 1 & 0 & e &0&a\\ 0 &1 &d &0&b \\ 0 & 0 &0 &1 &c \\ 0 &0 &0 &0 &p \end{bmatrix} ⎣⎢⎢⎡10000100ed000010abcp⎦⎥⎥⎤
- 可以看出,从第 h 个方程开始的所有方程的系数都会变为 0 。
- 问: 什么时候无解?什么时候有解?
- 答: p!=0 时无解,p=0时有多解。我们可以去判断 [ h , n ] [h,n] [h,n] 的所有方程的右边数字是否恒等于 0 来判断无解还是多解。
- 问: 什么是自由元?
- 答: 当出现多解时候,就会出现自由元。即:有些未知数的取值可以任意取,其取值可能影响着其他非自由元的取值也可能不影响。
- 问: 有多少个自由元?是哪几个?
- 答: n-(h-1)个,是那些无法在步骤 2 中找到非 0 元素的未知数。
时间复杂度: O(n3)
4.模板代码
m个n元线性方程组(无解返回0,多解返回-1,唯一解返回1)
#include<bits/stdc++.h>
using namespace std;
double a[105][105];
double eps=1e-6;
int m,n;
int gauss() {
int h=1;
for(int i=1; i<=n; i++) { //处理xi
int maxj=h;
for(int j=h+1; j<=m; j++) { //从未处理行中找到一个xi系数不为0的方程
if(fabs(a[maxj][i])<fabs(a[j][i]))maxj=j;
}
if(fabs(a[maxj][i])<eps)continue;//无法确定xi的值,去考虑下一个未知数
if(maxj!=h)swap(a[maxj],a[h]);//置换到第 h 个方程来
for(int j=i; j<=n+1; j++)a[h][j]/=a[h][i]; //将xi系数变为1,同时修改其所在方程其他系数的值
for(int k=1; k<=m; k++) { //将其他方程的xi的系数全变为0,同时修改对于方程其他未知数的系数的值
if(k==h)continue;
double div=a[k][i];
for(int j=i; j<=n+1; j++) {
a[k][j]-=div*a[i][j];
}
}
h++;
}
if(h<=n){
for(int i=h;i<=n;i++){//有0就无解了
if(a[i][n+1]<eps)return 0;
}
return -1;//都不是0,有多解(自由元数量为n-h+1)
}else return 1;
}
int main() {
cin>>n;
for(int i=1; i<=m; i++) {
for(int j=1; j<=n+1; j++)cin>>a[i][j];
}
int t=gauss();
if(t==1) {
for(int i=1; i<=n; i++)printf("%.2lf\n",a[i][n+1]);
} else if(t==0)printf("无解");
else if(t==-1)printf("有多解");
}
二.高斯消元求解异或方程式
1.问题: m × ( n + 1 ) m\times(n+1) m×(n+1)描述一个 n元异或方程组,Rij (0或1) 为第 i 个方程未知数 xj 的系数,求解未知数 x1->xn
2.方法:高斯-约旦消元
- 与一般的高斯消元相似,只不过加变成了异或
3.bitset优化
- 由于是行与行之间的所有元素相互异或,我们我们可以直接使用 bitset O(1) 代替 O(n)
- 由于方程的系数是0或1,并且是由方程之间的相互异或操作,我们可以直接使用 bitset 来表示一整个方程系数。这样异或操作就从O(1)变成了O(n)。
- 时间复杂度: O ( n m ) O(nm) O(nm)
#include<bits/stdc++.h>
using namespace std;
const int N=2005;
bitset<2005>a[N];
int m,n;
int gauss() {
int h=1;
for(int i=1; i<=n; i++) { //处理xi
int pos=-1;
for(int j=h; j<=m; j++) { //从未处理行中找到一个xi系数不为0的方程
if(a[j][i]){
pos=j;
break;
}
}
if(pos==-1)continue;//无法确定xi的值,去考虑下一个未知数
if(pos!=h)swap(a[pos],a[h]);//置换到第 h 个方程来
for(int j=1; j<=m; j++) { //将其他方程的xi的系数全变为0,同时修改对于方程其他未知数的系数的值
if(a[j][i]==1&&j!=h)a[j]^=a[h];
}
h++;
}
if(h<=n){
for(int i=h;i<=n;i++){//有0就无解了
if(a[i][n+1]==0)return 0;
}
return -1;//都不是0,有多解(自由元数量为n-h+1)
}else return 1;
}
int main() {
cin>>n;
int x;
for(int i=1; i<=m; i++) {
for(int j=1;j<=n+1;j++){
scanf("%1d",&x);
a[i][j]=x;
}
}
int t=gauss();
if(t==1) {
for(int i=1; i<=n; i++)printf("%d\n",a[i][n+1]);
} else if(t==0)printf("无解");
else if(t==-1)printf("有多解");
}
三.高斯消元求逆矩阵
1.问题:给定n阶方阵,判断矩阵是否可逆,并求其 mod p下的逆矩阵
2.方法:高斯消元
- 仍然用初等行变化进行求解
- 设求解的矩阵为A,单位矩阵E。结论: (A,E)->(E,A-1)
- 那么问题就转化为,如何将一个A转化为E
步骤如下:
- 1.一行一行处理,(假设处理到第i行)
- 2.通过交换两行使得第i行首元非0
- 3.将首非0元素变为1,(j就是第i行的第i个元素),并处理该行其他元素,ps:因为这涉及除法,所以要求逆元
- 4.用第i行去将该“1”所在其他列的其他元素消为0
- 【注意】若在求解的过程中无法实现第二步,则矩阵不可逆
矩阵最后会变成这个样子,右边就是该矩阵的逆矩阵
[ 1 0 0 a b c 0 1 0 d e f 0 0 1 g h i ] \begin{bmatrix} 1 & 0 & 0 &a &b &c\\ 0 &1 &0 &d &e &f \\ 0 & 0 &1 &g &h &i\\ \end{bmatrix} ⎣⎡100010001adgbehcfi⎦⎤
3.模板代码
n阶行列式
#include<bits/stdc++.h>
using namespace std;
const int N=405;
const long long p=1e9+7;
int n,m;
long long a[N][N<<1];
long long ksm(long long a,long long b) { //求逆元
ret=1;
while(b) {
if(b&1)ret=ret*a%p;
a=a*a%p;
b>>=1;
}
return ret;
}
int main() {
cin>>n;
m=n*2;
for(int i=1; i<=n; ++i) {
for(int j=1; j<=n; j++) {
cin>>a[i][j];
}
a[i][n+i]=1;//矩阵右边构造一个单位矩阵
}
for(int i=1; i<=n; i++) { //高斯消元板子
for(int k=i; k<=n; k++) {//保证首非0元素不为0
if(a[k][i]) {
for(int j=1; j<=m; j++)swap(a[i][j],a[k][j]);
break;
}
}
if(!a[i][i]) {//若首非0元素为0,则矩阵无解
cout<<"No Solution";
return 0;
}
long long x=ksm(a[i][i],p-2); //求逆元
for(int j=i; j<=m; j++)a[i][j]=a[i][j]*r%p;//更改当前行
for(int k=1; k<=n; k++) { //更改其他行信息
if(k!=i) {
long long div=a[k][i];
for(int j=i; j<=m; j++)a[k][j]=(a[k][j]-div*a[i][j]%p+p)%p;
}
}
//最后的矩阵的样子大概如下
//100abc
//010def
//001ghi
}
for(int i=1; i<=n; i++) {
for(int j=n+1; j<=m; j++){
cout<<a[i][j]<<" ";
}
cout<<endl;
}
return 0;
}
例题汇总
异或方程组
- 题目描述: 有 n 只虫子,每只虫子要么一只腿要么两只腿。有 m 次操作,每次操作取若干只虫子放入瓶中,瓶子会返回1或0来表示一共有奇数条腿还是偶数条腿。用 a[i][j] 描述第 j 只虫子取与不取,取为1不取为0 。求最少前需要前多少次操作,才能判断出每只虫子是一条腿还是两条腿。如果判断不了,就输出无法确定。
- 问题分析: 相加对 2 取余刚好对应了异或操作,即变成了最少需要前多少次操作,才能解除这个异或方程组。我们在置换的时候维护一下用到的方程的最大下标即可。
#include<bits/stdc++.h>
using namespace std;
const int N = 2005;
bitset<2005>a[N];
string s;
int ans=0,n,m;
int gssy() {
int h=1;
for(int i=1; i<=n; i++) { //处理xi
int pos=-1;
for(int j=h; j<=m; j++) { //从未处理行中找到一个xi系数不为0的方程
if(a[j][i]) {
pos=j;
break;
}
}
if(pos==-1)return 0;//无法确定xi的值,去考虑下一个未知数
ans=max(ans,pos);
if(pos!=h)swap(a[pos],a[h]);//置换到第 h 个方程来
for(int j=1; j<=m; j++) { //将其他方程的xi的系数全变为0,同时修改对于方程其他未知数的系数的值
if(a[j][i]==1&&j!=h)a[j]^=a[h];
}
h++;
}
return 1;
}
int main() {
cin>>n>>m;
int x;
for(int i=1; i<=m; i++) {
for(int j=1; j<=n+1; j++) {
scanf("%1d",&x);
a[i][j]=x;
}
}
if(gssy()==0)cout<<"Cannot Determine";
else {
cout<<ans<<endl;
for(int i=1; i<=n; i++) {
if(a[i][n+1]==1)cout<<"?y7M#"<<endl;
else cout<<"Earth"<<endl;
}
}
return 0;
}