【计算机图形】Physics-Based Animation-小8君的专栏

「勤奋,只是为了能更好的偷懒」

【数值计算】数值解析--联立一次方程组:迭代法

雅可比迭代法 当较大时,上一篇介绍的高斯消去法将会非常耗时()。由此,选取一个合适的初始值,反复迭代计算逐渐趋近方程组解的方法便叫做迭代法。下文将对最基本的迭代法—雅可比(Jacobi)迭代法进行讲解。 假设有如下所示3元联立方程组: 若系数行列的对角成分,则可知 把 设为初始值,...

2017-04-16 16:45:21

阅读数 393

评论数 0

【数值计算】数值解析--n元一次联立方程组:直接解法

高斯消去法 高斯消去法(Gaussian elimination)是指,通过前进消去和后退带入这样的两段计算求解的方法。  加减法(中学所学)是我们平常用的解法之一。 例如,现有如下所示的二元一次方程组。 将等式两边同乘以一个实数,上下系数合并,消去其中一元未知数的方法便是熟知的加减法...

2017-04-13 22:57:54

阅读数 935

评论数 0

【数值计算】数值解析--n元一次联立方程组

n元1次联立方程组 把元1次方程组用一个的矩阵按如下方式表示: 这里的是系数项,为常数。用矢量表示,即 1次方程组可以根据Cramer's fomula求解. 如果存在逆矩阵的话,上式可由: 解的. 逆矩阵如果用余子式矩阵表示,即 这里的是的行列式(determin...

2017-03-07 12:59:51

阅读数 499

评论数 0

【数值计算】数值解析--非线性方程的根

线性方程与非线性方程 当我们求关于的方程的解时,如果,是像 这样的线性形方程(1次方程)的话,其解为, 这里的。但是,是非线性方程的时候解法要复杂的多。比如,像下面这样的次代数方程(algebraic equation)的情况, 的2次方程我们很容易求解,3次或4次方程可以通...

2017-02-23 14:30:31

阅读数 720

评论数 0

【CG物理模拟系列】流体模拟--粒子法之Position Based Fluids

Position Based Fluids 我们使用粒子法进行流体模拟时,一个很重要的因素就是如何保持流体的非压缩性。非压缩性是指,随着流体的流动,密度在空间和时间上不发生变化,例如像水这样的流体,同时,与音速相比流速足够小的空气也可以当成非压缩性流体来考虑 (接近音速的时候,空气会发生压缩,音...

2017-02-21 14:45:25

阅读数 1491

评论数 2

【数值计算】数值解析--二阶偏微分方程的3种基本形

2阶偏微分方程的3种基本类型 2阶偏微分方程的3中基本类型有:椭圆型,双曲线型,抛物线型。 首先,关于的2阶偏微分方程的一般形式为, 这里的是与相关的函数。 根据与2阶偏微分项相关的系数,通过使用判別式,可以把2阶偏微分方程分成下面几类。 椭圆型(elliptic)...

2017-02-17 12:19:15

阅读数 5250

评论数 0

2016年个人书单

实际上是15,16年看过的书,将其整理并做简要评价。 专业类 David M. Bourg和Bryan Bywalec所著的书,我看的是日文版翻译。比较详细的介绍了游戏中的基本物理定律(算法及代码示例),及碰撞,爆炸,声音,映射等的常用处理方法。 一本日文书,简洁明要的介绍了近年来在...

2017-02-16 12:54:15

阅读数 348

评论数 0

【CG物理模拟系列】粒子法--表面生成手法(下)

这一篇来说说 网格生成方法 中的 Screen Space Mesh 法。 Screen Space Mesh  一般情况下,从隐函数曲面中提取出记载着表面数据的三角形网格面时,我们常用像Marching Cubes这样的方法,把3D空间划分成数个3D网格单元,然后在根据每个单元内生成网格...

2017-02-14 11:57:22

阅读数 624

评论数 0

【CG物理模拟系列】粒子法--表面生成手法(上)

使用粒子法模拟水流时,水流表面生成方法主要分为以下两类。 表面隐函数 Muller的色彩函数 [1]Zhu and Bridson的方法 [2]Adams等的方法 [3]Anisotropic Kernel [4] Upsampling法 [5] 生成网格(Mesh) Marching...

2017-02-13 12:56:23

阅读数 990

评论数 0

3D模型文件的导入导出

3D模型文件的导入导出 由多边形构成的3D模型文件的导入导出库,可以对应的类型如下。 OBJ文件导入导出DXF文件导入导出(仅限3DFACE entities)VRML文件导入导出(仅限IndexedFaceSet)3DS文件导入导出STL文件导入导出OFF文件导入导出 ↑ ...

2017-02-11 14:09:15

阅读数 2327

评论数 0

【物理模拟手法介绍】--有限差分法(FDM)和有限体积(FVM)

有限差分法简介 有限差分法是,偏微分方程(PDE:Partial Differential Equation)的数值解法之一。先把计算空间按照有限size的空间大小进行分割,然后在每个小空间內的点(空间或边界的中心)上定义物理量(未知量)。根据这些未知量间值的有限差分,求分割后定义点间的距离等(...

2017-02-11 13:23:53

阅读数 2518

评论数 0

【CG物理模拟系列】流体模拟--粒子法之MPS法(理论)

MPS法  前面的文章里我们讲过SPH曾是为了处理压缩性流体问题而提出的方法,与之相对,这一篇来说说用粒子法处理非压缩性流体的研究方法--Moving Particle Semi-implicit (MPS)法(1)。 在MPS法中导入了粒子数密度,为了使这个密度保持不变,使用隐式方法求解泊松...

2017-02-08 16:07:59

阅读数 2064

评论数 0

【CG物理模拟系列】开篇:介绍(下)

上一篇介绍了CG物体模拟的定义,流程及种类,这一篇讲下物理模拟常用手法,物理模拟引擎,从物理模拟+3DCG程序的编写・到导出结果动画的处理顺序。 物理模拟常用手法 粒子法(Particle Method)有限差分法(FDM : Finite Difference Method)有限体积法(F...

2017-02-01 14:26:32

阅读数 543

评论数 0

【CG物理模拟】风筝模拟

放风筝是一项起源于中国的传统娱乐项目,随后推广到世界各地。按作用可以分成节日庆典祝福风筝,体育竞技类,单纯的娱乐向风筝等。要想用计算机较为真实的模拟风筝运动,首先我们先得搞清楚风筝的受力情况。 飞行原理 如图(b)所示,风筝在天空中飞翔时所受的力为:风筝线的张力,尾巴的张力,自...

2017-01-30 17:06:07

阅读数 832

评论数 1

GLSL中环境映射&菲涅尔反射效果

立方体贴图纹理与菲涅尔反射效果(Fresnel reflection)简介 ↑ 环境映射 光滑物体表面的鏡面反射效果及投射效果可以极大提升渲染场景的真实性。然而,为了正确模拟这类效果,需要用到光线追踪等非常耗时的方法。由于影响渲染物体的外在因素只有周围的远景,我们可以直接使用周围...

2017-01-23 17:55:28

阅读数 2158

评论数 0

GLSL中创建贴图

纹理贴图创建 在OpenGL程序中,通过glBindTexture来绑定纹理贴图,然后用glTexCoord来指定贴图坐标位置。这里,用glGenTexture函数可以用来表示纹理单元索引。 在使用多重纹理时,需要通过 void glActiveTexture(GLenum text...

2017-01-13 13:03:35

阅读数 842

评论数 0

Tex使用笔记

介绍  Tex是一个非常优秀的排版工具,它在学术界十分流行,特别是数学,物理,计算机界等复杂的数学公式较多的领域。使用Latex及Latex模板(Latex Temples),只需掌握少数命令,便可以在短时间生成高质量的文档。 安装 这里使用Texwork编辑器进行Windows快速安装(...

2016-12-17 15:15:56

阅读数 354

评论数 0

【CG物理模拟系列】弹性体模拟--Position-based法之Shape Matching(代码实现)

Shape Matching法核心代码讲解 这次讲讲Shape Matching 算法的具体代码实现。 主要写在shape_matching.h和shape_matching.cpp两个文件中,以代码注释的形式进行讲解。之后是变量声明及函数声明, shape_matching.h 头文件中主要...

2016-11-10 15:51:22

阅读数 622

评论数 0

【CG物理模拟系列】弹性体模拟--Position-based法之Shape Matching

Position-based法 Position-based法与传统的力学基础方法不同,根据构成物体的顶点等元素间的约束条件(Constraint),直接变更顶点的位置坐标的方法。                                                         ...

2016-11-08 16:56:56

阅读数 742

评论数 0

GetForce规格参数

规格参数表 详细内容参照NVIDIA官网。   GeForce 1000 (Pascal)    TITAN X GTX1080 GTX1070 GTX1060(6GB) GTX1060(3GB) 核心代号 ...

2016-10-28 16:29:48

阅读数 318

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭