深度学习:Pytorch最全面的入门教程

关于深度学习的入门理论知识可阅读博主的另一篇博客深度学习:卷积神经网络CNN.

关于Python基础与速成可阅读博主的另一篇博客Python基础与速成.

本文主要介绍了Python和Pytorch的相关入门基础知识,更多详细的关于python的基础教程可见Python 基础语法 | 菜鸟教程,重点了解python的基础语法、常用数据类型、条件和循环语句、函数、模块和面向对象的编程即可。更多关于Pytorch的详细知识可参考Pytorch官网文档.

python学习中的两大工具函数

dir():打开查看工具箱及分支

dir(torch)
dir(torch.cuda)

help():查看帮助

help(torch.cuda.is_available)  # 注意在此要省去()

数据集与相关处理

  • Dataset

主要用于编辑、获取数据集及其label。

from torch.utils.data import Dataset
# 详细文档可查看help
help(Dataset)
  • TensorBoard

直观地观察输入与输出结果或不同阶段的结果,其中包括了数据、图片和计算图等多个类型,方便用于可视化分析。

from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter("../logs")

writer.add_image()
writer.add_graph()
writer.add_scalar()

writer.close()

# 在终端输入
tensorboard --logdir=logs
# 此时会输出一个网址,打开网址,即可查看显示结果
  • torchvision

包含了在图像视觉领域,目前较为流行的数据集、模型结构和常用的图片转换工具。

torchvision.datasets包含了一些图像视觉领域流行的数据集,它是torch.utils.data.Dataset的子类,例如:

  1. List item
  2. MNIST
  3. COCO(用于图像标注和目标检测)(Captioning and Detection)
  4. LSUN Classification
  5. ImageFolder
  6. Imagenet-12
  7. CIFAR10 and CIFAR100
  8. STL10

torchvision.models包含了一些图像视觉领域典型的模型,例如:

  1. AlexNet
  2. VGG
  3. ResNet
  4. SqueezeNet
  5. DenseNet

torchvision.transforms包含了图片处理的一些操作,例如,数据类型的转换、裁剪、标准化等等。详细可看官方文档,重点了解输入、输出类型以及作用。
图片的三种主要的类型:tensor、numpy、PIL。

torchvision.utils包含了一些常用的工具。

  • DataLoader

DataLoader可以基于某个可迭代的dataset,每次从dataset中基于某种采样原则取出一个batch的数据。

torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=None,pin_memory=False,
drop_last=False, timeout=0, worker_init_fn=None)

主要用于batch的相关操作。常见的参数:

dataset:数据集名称
batch_size:batch大小。
shuffle:每Epoch划分Batch时是否随机(每一个epoch是否为乱序),一般设为True。
num_workers:是否多进程读取数据(默认为0);num_workers的经验设置值是自己电脑/服务器的CPU核心数,如果CPU很强、RAM也很充足,就可以设置得更大些,windows下设为非零可能会报错。
drop_last: 当样本数不能被batchsize整除时,最后一批数据是否舍弃(default: False)。

深度学习 | 三个概念:Epoch, Batch, Iteration

网络搭建

网络基类 torch.nn.Module

所有网络的基类,你的模型也应该继承这个类。

例如:

import torch.nn as nn

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__() 		# 调用基类的初始化函数
        self.conv1 = nn.Conv2d(1, 20, 5)	# submodule: Conv2d
        self.relu1 = nn.Relu()
        self.conv2 = nn.Conv2d(20, 20, 5)
        self.relu2 = nn.Relu()

    def forward(self, x):
        x = self.conv1(x)
        x = self.relu1(x)
        x = self.conv2(x)
        x = self.relu2(x)
        return x

可以使用sequential容器,使得上述代码变得更加精简:

import torch.nn as nn

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()  # 调用基类的初始化函数
        self.model = nn.Sequential(
            nn.Conv2d(1, 20, 5),
            nn.ReLU(),
            nn.Conv2d(20, 20, 5),
            nn.ReLU())

    def forward(self, x):
        x = self.model(x)
        return x

卷积层

卷积在数字图像处理中最常见的应用是锐化和边缘提取,而用于深度学习中可以方便地进行特征提取。这里以2d卷积函数torch.nn.functional.conv2d为例介绍其有关参数与使用。

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

参数:
input – 输入张量的形状 (minibatch x in_channels x iT x iH x iW)
weight – 过滤器的形状 (in_channels x out_channels x kH x kW)
bias – 可选偏置的形状 (out_channels)
stride – 卷积核的步长,可以是单个数字或一个元组 (sh x sw)。默认: 1
padding – 输入上隐含零填充。

nn.Conv2d卷积层相当于对2d卷积函数做了一次封装。

class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

参数:
in_channels(int) – 输入信号的通道
out_channels(int) – 卷积产生的通道
kerner_size(int or tuple) - 卷积核的尺寸
stride(int or tuple, optional) - 卷积步长
padding (int or tuple, optional)- 输入的每一条边补充0的层数
dilation(int or tuple, `optional``) – 卷积核元素之间的间距
groups(int, optional) – 从输入通道到输出通道的阻塞连接数,通常使用默认值1
bias(bool, optional) - 如果bias=True,添加偏置,默认值为True

卷积前后尺寸变化:
在这里插入图片描述
N为batch_size
C i n C_{in} Cin为in_channels, C o u t C_{out} Cout为out_channels;
H i n H_{in} Hin为输入图片的高, H o u t H_{out} Hout为输出图片的高;
W i n W_{in} Win为输入图片的宽, W o u t W_{out} Wout为输出图片的宽;

池化层

一般有最大池化和平均池化,下面以2d最大池化层为例介绍其使用:

class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

参数:
kernel_size(int or tuple) - max pooling的窗口大小
stride(int or tuple, optional) - max pooling的窗口移动的步长。默认值是kernel_size
padding(int or tuple, optional) - 输入的每一条边补充0的层数
dilation(int or tuple, optional) – 池化核元素之间的间距
return_indices - 如果等于True,会返回输出最大值的序号,对于上采样操作会有帮助(一般不使用)
ceil_mode - 当ceil_mode = true时,将保存不足为kernel_size大小的数据保存,自动补足NAN至kernel_size大小;当ceil_mode = False时,剩余数据不足kernel_size大小时,直接舍弃。

池化前后尺寸变化:
在这里插入图片描述

激活层

激活层相对简单,一般使用非线性函数ReLu

class torch.nn.ReLU(inplace=False)

参数: inplace-是否对计算结果进行覆盖,若为True,覆盖input,若为False,保留input的值,计算结果保留在output。

线性层及其其他层

线性层一般作为全链接层。

class torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

参数:
in_features - 每个输入样本的大小
out_features - 每个输出样本的大小
bias - 若设置为False,这层不会学习偏置。默认值:True

在此仅列举一些其他层的简单介绍,详细可参考官网教程

  • 正则化层:包含了LayerNorm、BatchNorm等层,主要防止过拟合,提高模型泛化能力;
  • dropout层:在训练期间,使用来自伯努利分布的样本以概率 p 将输入张量的一些元素随机归零,也是为了防止过拟合,提高模型泛化能力;值得注意的是,dropout层在训练状态和测试状态是不一样的。在训练时 dropout 层是有效的,但是数据尺度会缩放,为了保持数据尺度不变,所有的权重需要除以 1-p。而在测试时 dropout 层是关闭的。因此在测试时需要先调用model.eval()设置各个网络层的的training属性为 False,在训练时需要先调用model.train()设置各个网络层的的training属性为 True。
  • 循环层:包含了RNN、LSTM等模型;
  • Transformer层:包含了transformer模型、编码器和解码器等。

损失函数与反向传播

常用的交叉熵损失函数与反向传播:

# Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()

优化器

SGD:随机梯度下降算法
Adam:自适应学习率梯度下降算法

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)

迭代一次epoch

for input, target in dataset:
    optimizer.zero_grad() # 梯度清零
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

现有网络模型的使用与修改

基于预训练好的ResNet模型,在其最后添加一个线性层,并打印其网络结构

import torchvision
from torch import nn

Resnet_model = torchvision.models.resnet50(pretrained=True)
Resnet_model.add_module('linear',nn.Linear(1000,10))
print(Resnet_model)

网络模型的保存与提取

网络模型的保存

import torch
import torchvision

vgg16 = torchvision.models.vgg16(pretrained=False)
# 保存方式1,保存模型结构+模型参数
torch.save(vgg16, "vgg16_method1.pth")

# 保存方式2,保存模型参数
torch.save(vgg16.state_dict(), "vgg16_method2.pth")

网络模型的提取

import torch
import torchvision

# 提取方式1,对应保存方式1
model = torch.load("vgg16_method1.pth")

# 提取方式2,对应保存方式2
vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("vgg16_methed2.pth"))

模型训练

train_cpu.py文件:使用CPU进行训练

import torchvision
from torch.utils.tensorboard import SummaryWriter

# 准备数据集
from torch import nn
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="../data", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="../data", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10, 训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))


# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x
tudui = Tudui()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
# learning_rate = 0.01
# 1e-2=1 x (10)^(-2) = 1 /100 = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

# 添加tensorboard
writer = SummaryWriter("../logs_train")

for i in range(epoch):
    print("-------第 {} 轮训练开始-------".format(i+1))

    # 训练步骤开始
    tudui.train()
    for data in train_dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    tudui.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(tudui, "tudui_{}.pth".format(i))
    print("模型已保存")

writer.close()

使用GPU进行训练:与CPU代码不同的地方主要是在模型、数据(输入img和标注target)和损失函数处做一些修改。
train_gpu1.py文件:使用GPU进行训练的方式1

import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter

# from model import *
# 准备数据集
from torch import nn
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="../data", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="../data", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10, 训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))


# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x
tudui = Tudui()
if torch.cuda.is_available():
    tudui = tudui.cuda()

# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()
# 优化器
# learning_rate = 0.01
# 1e-2=1 x (10)^(-2) = 1 /100 = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

# 添加tensorboard
writer = SummaryWriter("../logs_train")

for i in range(epoch):
    print("-------第 {} 轮训练开始-------".format(i+1))

    # 训练步骤开始
    tudui.train()
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    tudui.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(tudui, "tudui_{}.pth".format(i))
    print("模型已保存")

writer.close()

train_gpu2.py文件:使用GPU进行训练的方式2

import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter

# from model import *
# 准备数据集
from torch import nn
from torch.utils.data import DataLoader

# 定义训练的设备(CPU、GPU、指定GPU)
# device = torch.device("cpu")
# device = torch.device("cuda:0")
# device = torch.device("cuda:1")
device = torch.device("cuda")

train_data = torchvision.datasets.CIFAR10(root="../data", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="../data", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10, 训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))


# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x
tudui = Tudui()
tudui = tudui.to(device) # 省去赋值也可以 tudui.to(device)


# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device) # 省去赋值也可以 loss_fn.to(device)
# 优化器
# learning_rate = 0.01
# 1e-2=1 x (10)^(-2) = 1 /100 = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

# 添加tensorboard
writer = SummaryWriter("../logs_train")

for i in range(epoch):
    print("-------第 {} 轮训练开始-------".format(i+1))

    # 训练步骤开始
    tudui.train()
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.to(device) # 不可省去赋值
        targets = targets.to(device) # 不可省去赋值
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    tudui.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(tudui, "tudui_{}.pth".format(i))
    print("模型已保存")

writer.close()

模型测试

test.py文件:对模型进行测试

import torch
import torchvision
from PIL import Image
from torch import nn

image_path = "../imgs/airplane.png"
image = Image.open(image_path)
print(image)
image = image.convert('RGB')
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

model = torch.load("tudui_29_gpu.pth", map_location=torch.device('cpu'))
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
model.eval()
with torch.no_grad():
    output = model(image)
print(output)

print(output.argmax(1))

计算平台

如果自己的电脑GPU较差,且没有服务器可用,可以使用网上的一些计算平台资源:

  • Google Colab:前提是可以访问Google
  • Openbayes
  • AutoDL
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Player

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值