《黑神话:悟空》在敌人AI的设计中结合了深度学习与行为树技术,使得敌人的行为更加智能化和多样化
1. 行为树 (Behavior Tree)
行为树是现代游戏AI中常见的决策结构。它通过层次化的节点结构来管理敌人的行为逻辑。行为树主要包括以下几个部分:
选择节点 (Selector Node):
选择节点根据不同的条件来决定执行哪个子节点。例如,当敌人发现玩家接近时,它可能会选择攻击而非巡逻。
序列节点 (Sequence Node):
序列节点按顺序执行一系列行为,适用于需要连续执行的动作,比如发现玩家、追击、发动攻击。
条件节点 (Condition Node):
条件节点用于检测当前的环境状态,如敌人距离玩家的远近、是否有障碍物等,以此决定行动。
行为节点 (Action Node):
行为节点执行实际的动作,如攻击、防御、移动等。
在《黑神话:悟空》中,行为树通过层层判断,让敌人在不同的战斗场景中表现出复杂的决策能力,能够灵活应对玩家的战术。
2. 深度学习 (Deep Learning)
除了行为树,游戏还应用了深度学习技术来增强敌人AI的表现。这种技术不仅依赖预设的规则,还通过不断学习和调整来优化决策。以下是深度学习在AI设计中的一些应用:
对抗性生成网络 (GAN):
可能应用于敌人的战斗策略生成,通过模拟不同的战斗场景,让AI在对抗中学会识别玩家的行为