注意力机制(attention)

目录

非参注意力

自注意力机制(self-attention)

多头自注意力机制(Multi-head Self-attention)

Position Encoding 


非参注意力

 给定一组数据(gif.latex?x_%7Bi%7D,gif.latex?y%20_%7Bi%7D),i=1,2....n

最简单的方式给每一组数据添加一样权重大小的注意力

5492befef6ae414b8bc561087b395970.png

更好的注意力方案:Nadataya-Watson核回归 

ee393b79c89c403aab388d226442b59d.png

用每一个x的距离函数除以所有的距离函数和得到一个该x的比重(类似softmax)作为注意力大小

再将获取的n组不同的注意力乘上对应的y值,得到注意力加权结果。

K为计算x和gif.latex?x_%7Bi%7D之间的‘距离’的核函数,例如取高斯分布:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值