二分搜索法(循环不变量、求mid改进)

循环不变量

int l = 0, r = n - 1; // 在[l…r]的范围里寻找target”中,对于l和r的定义是全局不变的,一旦定义确定了,它们的取值也就确定了,分别为l=0和r=n-1。

另一种定义方式及对应的初始值:
int l = 0, r = n; // target在[l…r)的范围里”,对应初始值l=0,r=n。

二分搜索法代码:

#include <iostream>
#include <cmath>
#include <cassert>
#include <ctime>
#include "util.h"

using namespace std;

template<typename T>
int binarySearch(T arr[], int n, T target){

    int l = 0, r = n - 1; // 在[l...r]的范围里寻找target
    while(l <= r){    // 当 l == r时,区间[l...r]依然是有效的
        int mid = l + (r - l) / 2;
        if(arr[mid] == target) return mid;
        if(target > arr[mid])
            l = mid + 1;  // target在[mid+1...r]中; [l...mid]一定没有target
        else    // target < arr[mid]
            r = mid - 1;  // target在[l...mid-1]中; [mid...r]一定没有target
    }

    return -1;
}
/*另一种对循环不变量的定义方式所对应的写法:
int binarySearch(T arr[], int n, T target){

    int l = 0, r = n; // target在[l...r)的范围里
    while(l < r){    // 当 l == r 时, 区间[l...r)是一个无效区间
        int mid = l + (r - l) / 2;
        if(arr[mid] == target) return mid;
        if(target > arr[mid])
            l = mid + 1;    // target在[mid+1...r)中; [l...mid]一定没有target
        else// target < arr[mid]
            r = mid;        // target在[l...mid)中; [mid...r)一定没有target
    }
*/

int main() {

    int n = pow(10, 7);
    int* data = MyUtil::generateOrderedArray(n);

    clock_t startTime = clock();
    for(int i = 0 ; i < n ; i ++)
        assert(i == binarySearch(data, n, i));
    clock_t endTime = clock();

    cout << "Binary Search test complete." << endl;
    cout << "Time cost: " << double(endTime - startTime) / CLOCKS_PER_SEC << " s" << endl;

    return 0;
}

求mid的改进

mid = l + (r - l) / 2
避免了由mid=l+r可能引起的溢出问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值