【Pytorch】【CNN】一些资料

PyTorch中的CNN是一个卷积神经网络的实现。CNN的名字来自于它在处理图像时的工作原理,类似于我们人类看图像的方式。我们人类看一张图片时,会将整张图片分为一个个子图,并通过识别这些小部分的特征来确定整张图片的内容。CNN也是如此,在卷积层会分块扫描整张图片,进行局部感知,然后在全连接层将这些信息整合处理。 在PyTorchCNN实现中,我们首先需要搭建神经网络的结构。一种常见的搭建方式是使用nn.Module类来定义网络的架构。在这个类中,我们可以定义卷积层、激励层和全连接层等组件。一个典型的PyTorch CNN模型会包含多个卷积层、激励层和全连接层。 以下是一个示例的PyTorch CNN的搭建部分代码: ``` class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(1,16,5,1,2), nn.ReLU(), nn.MaxPool2d(2), ) self.conv2 = nn.Sequential( nn.Conv2d(16, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2), ) self.out = nn.Linear(32*7*7,10) #全连接层 def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) out = self.out(x) return out, x ``` 在这个示例中,我们定义了一个包含两个卷积层、激励层和全连接层的CNN模型。首先,通过nn.Sequential()将卷积层、ReLU激励函数和最大池化层组合起来,然后通过nn.Linear定义全连接层。在forward()方法中,我们按顺序经过卷积层和激励层,然后将输出展平成一维向量,最后通过全连接层得到最终的输出。 这是一个简单的PyTorch CNN的实现示例,在实际应用中,可以根据具体任务和数据集的需求进行修改和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值