利用Shap解释Xgboost(或者别的)模型

Shap的一些介绍:
SHAP包
算法解析
shap的中文解析
知乎的翻译
ps,sklearn库的模型可以用lime模块解析

DEMO1

参(chao)考(xi)利用SHAP解释Xgboost模型
数据集
数据集基本做了特征处理,就基本也不处理别的了。

检查下缺失值

print(data.isnull().sum().sort_values(ascending=False))
gk                          9315
cam                         1126
rw                          1126
rb                          1126
st                          1126
cf                          1126
lw                          1126
cm                          1126
cdm                         1126
cb                          1126
lb                          1126
data.isnull().sum(axis=0).plot.barh()
plt.title("Ratio of missing values per columns")
plt.show()

在这里插入图片描述

获取年龄

days = today - data['birth_date']
print(days.head())
0    8464 days
1   12860 days
2    7487 days
3   11457 days
4   14369 days
Name: birth_date, dtype: timedelta64[ns]
关于年龄计算这一块
day2 = (today - data['birth_date'])
0    8464 days
1   12860 days
2    7487 days
3   11457 days
4   14369 days
Name: birth_date, dtype: timedelta64[ns]
day2 = (today - data['birth_date']).apply(lambda x: x.days)
#把天数提取成整数
0     8464
1    12860
2     7487
3    11457
4    14369
Name: birth_date, dtype: int64
获得年龄特征
data['age'] = np.round((today 
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值