【常用表】常用公式与变换

1.常用公式

平 方 和 公 式 : 1 2 + 2 2 + 3 2 + . . . + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 平方和公式:1^2+2^2+3^2+...+n^2=\frac{n(n+1)(2n+1)}{6} 12+22+32+...+n2=6n(n+1)(2n+1)
立 方 和 公 式 : a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) 立方和公式:a^3+b^3 =(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)
立 方 差 公 式 : a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) 立方差公式:a^3-b^3 =(a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)
e 的 定 义 : e = lim ⁡ x → ∞ ( 1 + 1 x ) x e的定义:e = \lim_{x \to \infty} (1+\frac{1}{x})^x ee=xlim(1+x1)x

2.常用变换

( s i n x + c o s x ) 2 = 1 + 2 s i n x c o s x 、 ( s i n x − c o s x ) 2 = 1 − 2 s i n x c o s x (sinx+cosx)^2=1+2sinxcosx、(sinx-cosx)^2=1-2sinxcosx (sinx+cosx)2=1+2sinxcosx(sinxcosx)2=12sinxcosx
( x ) ′ = 1 2 x 、 ( s i n 2 x ) ′ = s i n 2 x 、 ( 1 x ) ′ = − 1 x 2 (\sqrt{x})'=\frac{1}{2\sqrt{x}}、(sin^2x)'=sin2x、(\frac{1}{x})'=-\frac{1}{x^2} (x )=2x 1(sin2x)=sin2x(x1)=x21
[ l n f ( x ) ] ′ = f ′ ( x ) f ( x ) 、 ( l n x x ) ′ = 1 − l n x x 2 、 ( x l n x ) ′ = l n x + 1 [lnf(x)]'=\frac{f'(x)}{f(x)}、(\frac{lnx}{x})'=\frac{1-lnx}{x^2}、(xlnx)'=lnx+1 [lnf(x)]=f(x)f(x)(xlnx)=x21lnx(xlnx)=lnx+1
[ e x f ( x ) ] ′ = e x ( f ( x ) + f ′ ( x ) ) 、 [ x e f ( x ) ] ′ = e f ( x ) [ 1 + x f ′ ( x ) ] [e^xf(x)]'=e^x(f(x)+f'(x))、[xe^{f(x)}]'=e^{f(x)}[1+xf'(x)] [exf(x)]=ex(f(x)+f(x))[xef(x)]=ef(x)[1+xf(x)]
∫ 1 1 + c o s x d x = t a n x 2 + c 、 s i n x = c o s ( x − π 2 ) \int \frac{1}{1+cosx}dx=tan\frac{x}{2}+c、sinx=cos(x-\frac{\pi}{2}) 1+cosx1dx=tan2x+csinx=cos(x2π)
l n ( x + 1 + x 2 ) : ① 关 于 x 的 奇 函 数 ② 在 x → 0 时 , l n ( x + 1 + x 2 ) 与 x 等 价 ln(x+\sqrt{1+x^2}):①关于x的奇函数 ②在x\to0时,ln(x+\sqrt{1+x^2})与x等价 ln(x+1+x2 )xx0ln(x+1+x2 )x


有一定难度

欧 拉 积 分 : ∫ 0 π 2 l n s i n x d x = − π 2 l n 2 欧拉积分: \int_0^{\frac{\pi}{2}}{lnsinx}dx=-\frac{\pi}{2}ln2 02πlnsinxdx=2πln2
欧 拉 积 分 可 尝 试 此 题 : ∫ − π 2 π 2 c o s x l n c o s x 1 + s i n x + c o s x d x = ? 欧拉积分可尝试此题:\int _{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{cosxlncosx}{1+sinx+cosx}dx=? 2π2π1+sinx+cosxcosxlncosxdx=?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值