1.常用公式
平
方
和
公
式
:
1
2
+
2
2
+
3
2
+
.
.
.
+
n
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
平方和公式:1^2+2^2+3^2+...+n^2=\frac{n(n+1)(2n+1)}{6}
平方和公式:12+22+32+...+n2=6n(n+1)(2n+1)
立
方
和
公
式
:
a
3
+
b
3
=
(
a
+
b
)
(
a
2
−
a
b
+
b
2
)
立方和公式:a^3+b^3 =(a+b)(a^2-ab+b^2)
立方和公式:a3+b3=(a+b)(a2−ab+b2)
立
方
差
公
式
:
a
3
−
b
3
=
(
a
−
b
)
(
a
2
+
a
b
+
b
2
)
立方差公式:a^3-b^3 =(a-b)(a^2+ab+b^2)
立方差公式:a3−b3=(a−b)(a2+ab+b2)
e
的
定
义
:
e
=
lim
x
→
∞
(
1
+
1
x
)
x
e的定义:e = \lim_{x \to \infty} (1+\frac{1}{x})^x
e的定义:e=x→∞lim(1+x1)x
2.常用变换
(
s
i
n
x
+
c
o
s
x
)
2
=
1
+
2
s
i
n
x
c
o
s
x
、
(
s
i
n
x
−
c
o
s
x
)
2
=
1
−
2
s
i
n
x
c
o
s
x
(sinx+cosx)^2=1+2sinxcosx、(sinx-cosx)^2=1-2sinxcosx
(sinx+cosx)2=1+2sinxcosx、(sinx−cosx)2=1−2sinxcosx
(
x
)
′
=
1
2
x
、
(
s
i
n
2
x
)
′
=
s
i
n
2
x
、
(
1
x
)
′
=
−
1
x
2
(\sqrt{x})'=\frac{1}{2\sqrt{x}}、(sin^2x)'=sin2x、(\frac{1}{x})'=-\frac{1}{x^2}
(x)′=2x1、(sin2x)′=sin2x、(x1)′=−x21
[
l
n
f
(
x
)
]
′
=
f
′
(
x
)
f
(
x
)
、
(
l
n
x
x
)
′
=
1
−
l
n
x
x
2
、
(
x
l
n
x
)
′
=
l
n
x
+
1
[lnf(x)]'=\frac{f'(x)}{f(x)}、(\frac{lnx}{x})'=\frac{1-lnx}{x^2}、(xlnx)'=lnx+1
[lnf(x)]′=f(x)f′(x)、(xlnx)′=x21−lnx、(xlnx)′=lnx+1
[
e
x
f
(
x
)
]
′
=
e
x
(
f
(
x
)
+
f
′
(
x
)
)
、
[
x
e
f
(
x
)
]
′
=
e
f
(
x
)
[
1
+
x
f
′
(
x
)
]
[e^xf(x)]'=e^x(f(x)+f'(x))、[xe^{f(x)}]'=e^{f(x)}[1+xf'(x)]
[exf(x)]′=ex(f(x)+f′(x))、[xef(x)]′=ef(x)[1+xf′(x)]
∫
1
1
+
c
o
s
x
d
x
=
t
a
n
x
2
+
c
、
s
i
n
x
=
c
o
s
(
x
−
π
2
)
\int \frac{1}{1+cosx}dx=tan\frac{x}{2}+c、sinx=cos(x-\frac{\pi}{2})
∫1+cosx1dx=tan2x+c、sinx=cos(x−2π)
l
n
(
x
+
1
+
x
2
)
:
①
关
于
x
的
奇
函
数
②
在
x
→
0
时
,
l
n
(
x
+
1
+
x
2
)
与
x
等
价
ln(x+\sqrt{1+x^2}):①关于x的奇函数 ②在x\to0时,ln(x+\sqrt{1+x^2})与x等价
ln(x+1+x2):①关于x的奇函数②在x→0时,ln(x+1+x2)与x等价
有一定难度
欧
拉
积
分
:
∫
0
π
2
l
n
s
i
n
x
d
x
=
−
π
2
l
n
2
欧拉积分: \int_0^{\frac{\pi}{2}}{lnsinx}dx=-\frac{\pi}{2}ln2
欧拉积分:∫02πlnsinxdx=−2πln2
欧
拉
积
分
可
尝
试
此
题
:
∫
−
π
2
π
2
c
o
s
x
l
n
c
o
s
x
1
+
s
i
n
x
+
c
o
s
x
d
x
=
?
欧拉积分可尝试此题:\int _{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{cosxlncosx}{1+sinx+cosx}dx=?
欧拉积分可尝试此题:∫−2π2π1+sinx+cosxcosxlncosxdx=?