面试总结2024

1.synchronized锁升级

 是一个在多线程环境中为了优化性能和减少开销而设计的过程。synchronized锁升级通常涉及以下几个阶段:

无锁状态:在初始状态下,对象锁是处于无锁状态的,即没有线程持有该锁。

偏向锁(Biased Locking):

当一个线程访问同步块并获取对象的锁时,虚拟机会尽量将这个锁“偏向”于当前线程,以减少同步操作的开销。
偏向锁会在对象的Mark Word中记录线程ID,之后这个线程再次进入同步块时,就可以直接获取锁,无需进行CAS操作或同步检查。
如果出现了其他线程竞争锁的情况,偏向锁会被撤销,并可能升级为轻量级锁。

轻量级锁(Lightweight Locking):

轻量级锁是为了解决没有多线程竞争时的重量级锁的开销问题而设计的。
当一个线程尝试获取轻量级锁时,它会使用CAS操作尝试将对象的Mark Word更新为指向当前线程栈帧中锁记录的指针。
如果CAS操作成功,该线程就获得了锁;如果失败,则说明有竞争,线程会进入自旋状态,尝试再次获取锁。
自旋有一定的次数限制,如果自旋次数达到预设值仍未能获取锁,则可能会升级为重量级锁。

重量级锁(Heavyweight Locking):

重量级锁是传统意义上的互斥锁,它依赖于操作系统的同步机制来实现。
当锁升级为重量级锁时,会创建一个Monitor对象来管理锁,并将等待获取锁的线程阻塞在Monitor的EntryList队列中。
当持有锁的线程释放锁时,它会唤醒EntryList队列中的线程来竞争锁。

需要注意的是,锁的升级是逐级进行的,即从偏向锁到轻量级锁,再到重量级锁,且一旦锁升级到某个级别,就不会再降级到更低级别。这个过程是由Java虚拟机(JVM)自动完成的,无需开发者手动干预。

总的来说,synchronized锁升级过程是为了提高多线程环境下的性能和吞吐量,减少同步操作的开销,并尽量避免线程切换的开销。

2.insert into t1 from (select * from t2)用了什么锁?

临键锁

3.kafka的Rebalance

Kafka的Rebalance是一种协议,用于在Consumer Group中重新分配订阅Topic的分区。以下是关于Kafka Rebalance的详细解释:

1. Rebalance的定义

Rebalance是Kafka中用于确保Consumer Group内的所有Consumer能够公平、均衡地消费Topic分区的一种机制。当Consumer Group中的成员数量变化、Topic分区数量变化或订阅的Topic发生变化时,会触发Rebalance过程。

2. 触发Rebalance的时机
新的Consumer加入:当新的Consumer实例加入Consumer Group时,会触发Rebalance。
Consumer离开:Consumer实例可能因为各种原因(如宕机、长时间未发送心跳等)被认为是离开,从而触发Rebalance。
Coordinator变更:在Kafka 0.10及以上版本中,如果Consumer Group的Coordinator节点故障并重新选举,也会触发Rebalance。
Topic或分区变化:当Consumer Group订阅的Topic数量或Topic的分区数量发生变化时,会触发Rebalance。
3. Rebalance的过程

Rebalance过程主要分为两个阶段:Join和Sync。

Join阶段:所有Consumer成员都向Coordinator发送JoinGroup请求,请求加入Consumer Group。Coordinator会选择一个Consumer作为leader,并将组成员信息和订阅信息发送给leader。
Sync阶段:leader根据组成员信息和订阅信息制定分区分配方案,并封装进SyncGroup请求中发送给Coordinator。Coordinator将分配方案发送给所有Consumer成员。
4. Rebalance的影响
停止消费:在Rebalance过程中,Consumer Group内的所有Consumer实例都会停止工作,等待Rebalance过程完成。
可能的数据重复消费:由于offset可能在Rebalance前未被提交,因此可能会出现数据被重复消费的情况。
5. 改进和优化

为了减少Rebalance对系统性能的影响,Kafka在后续版本中引入了渐进式Rebalance等优化措施。这些措施可以在不释放当前所有资源的情况下进行分区重新分配,从而减少停机时间和数据重复消费的风险。

综上所述,Kafka的Rebalance机制是确保Consumer Group内负载均衡的关键机制。然而,它也可能对系统性能产生一定影响,因此在实际应用中需要注意触发条件和优化措施。

4.RocketMQ的延时消息原理

RocketMQ的延时消息原理主要基于以下几个关键点:

延时级别的设置:在发送消息时,生产者可以通过设置消息的延时级别(delayTimeLevel)来指定消息被消费前的延迟时间。RocketMQ预设了多个延时级别,如1秒、5秒、1分钟、2分钟等,延时级别越高,延时时间越长。

消息存储与转换:当延时消息被发送到Broker时,Broker并不会立即将其放入目标Topic的队列中,而是根据延时级别将消息存储到专门的延时队列中。延时队列有多个,每个延时级别对应一个队列,队列的编号与延时级别相关。

定时任务处理:Broker内部有一个定时任务(ScheduleMessageService),该任务负责定期检查延时队列中的消息。当消息达到其设定的延时时间后,定时任务会将该消息从延时队列中取出,并重新放入到目标Topic的队列中,等待消费者消费。

消息消费:消费者按照正常流程从目标Topic的队列中拉取消息进行消费。对于之前被设置为延时的消息,在达到延时时间后,它们会像普通消息一样被消费者消费。

自定义延时时间:如果预设的延时级别不满足需求,生产者还可以通过在消息属性中设置自定义的延时时间(如通过putUserProperty方法设置"delayTime"属性)来实现更灵活的延时控制。但这种情况下,需要在生产者和消费者端都进行相应的处理。

总结来说,RocketMQ的延时消息原理是通过设置消息的延时级别,将消息存储在专门的延时队列中,并通过定时任务在消息达到延时时间后将其重新放入目标Topic的队列中,从而实现消息的延时消费。

 

 

5.线上cpu飙升,怎么排查问题。

Arthas 是一款 Java 线上诊断工具,它可以在不重启应用的情况下,动态地查看、修改应用的状态,包括内存、线程、类加载信息、方法调用等。使用 Arthas 来排查线上 CPU 飙升的问题是一个非常有效的手段。

 

以下是使用 Arthas 排查线上 CPU 飙升问题的一般步骤:

1. 安装 Arthas

首先,你需要在出问题的服务器上安装 Arthas。Arthas 提供了方便的安装脚本,你可以通过 wget 或 curl 命令下载并执行安装脚本。

bash

wget https://alibaba.github.io/arthas/arthas-boot.jar

java -jar arthas-boot.jar

按照提示选择对应的 Java 进程,Arthas 将被附加到该进程上。

2. 查看线程信息

使用 Arthas 的 thread 命令来查看当前 Java 进程的线程信息。你可以通过 -n 参数来限制显示的线程数量,或者通过 grep 命令来过滤特定状态的线程(如 RUNNABLE)。

bash

# 查看所有线程

thread

# 查看 CPU 使用率最高的线程

thread -n 1

# 或者使用更详细的命令,如 thread --state BLOCKED

3. 定位问题线程

找到 CPU 使用率高的线程后,记录下它的线程 ID(通常是 nid 列的值)。这个线程 ID 是 16 进制的,但 Arthas 的一些命令可能需要 10 进制的线程 ID(即 Java 层面的线程 ID),这时可以使用 thread 线程ID 命令来获取 Java 层面的线程信息。

4. 查看线程堆栈

使用 Arthas 的 stack 命令来查看问题线程的堆栈信息。你需要提供 Java 层面的线程 ID(即 thread 命令输出的 id 列的值)。

bash

stack 线程ID

堆栈信息将显示线程当前的方法调用栈,这有助于你定位到具体的问题代码。

5. 分析堆栈信息

根据堆栈信息中的类名、方法名和行号等信息,定位到具体的代码位置。检查这些代码是否存在性能问题,如死循环、复杂的计算、不必要的数据库查询等。

6. 监控和调优

如果问题不是由单一代码点引起的,你可能需要使用 Arthas 的其他命令(如 watch、trace、monitor 等)来监控方法调用、跟踪方法执行路径或监控 JVM 状态。

watch 命令可以用来观察方法调用情况,包括入参、出参、异常等。

trace 命令可以用来跟踪方法内部的执行路径,显示每行代码的执行时间。

monitor 命令可以用来监控方法的调用次数和调用时间,帮助识别热点方法。

7. 解决问题

根据分析结果,对代码进行相应的优化或修复。可能包括修改算法、减少不必要的计算、优化数据库查询、增加缓存等。

8. 验证和部署

在本地或测试环境验证修改后的代码,确保问题已解决且没有引入新的问题。然后,将修改后的代码部署到线上环境。

9. 监控和反馈

部署后,继续监控系统的性能指标,确保 CPU 使用率恢复正常。如果问题仍然存在,可能需要进一步的分析和调试。同时,将问题和解决方案记录下来,以便将来参考和分享。

 

6.redis集群如何进行故障转移?如何保证高可用?主从同步的过程?rdb是什么?

Redis集群进行故障转移的过程主要包括:

集群中的节点通过定期发送PING消息来检测其他节点的存活状态,当某个节点未能响应PING消息时,会被标记为疑似下线。
一旦有足够数量的节点确认某个主节点疑似下线,该节点会被判定为真实下线。
随后,从该主节点的从节点中选举出一个新的主节点来接替原主节点的工作,并执行slaveof no one命令将自身状态改为master。
新的主节点会接管原主节点的槽位,并向集群广播自己的状态,完成故障转移。

Redis保证高可用的方式主要有主从复制、哨兵和集群:

主从复制通过数据冗余和故障恢复来提高可用性。
哨兵模式则通过自动化的故障转移和配置管理来进一步增强Redis的高可用性。
集群模式结合了主从复制和分片技术,能够在多个节点之间自动分配数据,并提供故障转移和负载均衡功能。

主从同步的过程包括:

从节点连接到主节点并发送SYNC命令请求数据同步。
主节点执行BGSAVE命令生成RDB快照文件,并将该文件发送给从节点。
从节点接收并加载RDB文件,完成数据同步。之后,主节点会将新的写操作通过AOF日志或增量同步的方式发送给从节点,保持数据一致性。

RDB(Redis Database Backup file)是Redis实现数据持久化的一种方式,它通过将内存中的数据以二进制文件的形式写入硬盘来保存数据。RDB文件可以在Redis服务器重启时用于恢复数据。

 

7.项目redis淘汰策略用的什么?redis大key怎么应对?用redis做过延时队列吗?

 

项目中的Redis淘汰策略可能会根据具体需求和资源情况而定,常见的策略包括noeviction(不淘汰任何数据)、allkeys-lru(基于LRU算法淘汰所有key)、allkeys-lfu(基于LFU算法淘汰所有key)、volatile-lru(基于LRU算法淘汰设置了过期时间的key)、volatile-lfu(基于LFU算法淘汰设置了过期时间的key)等。

 

针对Redis中的大key问题,可以采取以下策略应对:

 

拆分大key:将大key拆分成多个小key,以减少单个key占用的内存空间。

渐进式删除:使用SCAN、HSCAN等命令逐步删除大key中的数据,避免一次性删除造成的性能问题。

设置过期时间:为大key设置合理的过期时间,让其在一定时间后自动删除,从而避免占用过多内存。

 

关于Redis延时队列的实现,Redis本身并不直接提供延时队列的功能,但可以通过一些技术手段来实现,比如使用有序集合(sorted set)结合过期时间戳来实现延时效果,或者使用第三方库如RedisQueue等来实现更复杂的延时队列功能。

 

8.G1相对与CMS进步的地方在哪里?有了解JDK8之后新出现的**回收器吗?

G1相对于CMS的进步主要体现在以下几个方面:

内存管理更加精细:G1通过将堆内存划分为多个大小相同的Region,实现了物理分区、逻辑分代,相比CMS的连续内存区域划分,G1的内存管理更加精细,有助于减少内存碎片和提高内存利用率。

可控的停顿时间:G1可以设置预期停顿时间(Pause Time),通过预测模型来控制垃圾收集时间,从而避免长时间的停顿,提高应用的响应性。而CMS虽然也是低停顿的收集器,但其停顿时间不可控。

支持多核处理器:G1在垃圾收集过程中采用了多线程并行处理的方式,能够更好地利用多核处理器的计算能力,提高垃圾收集的效率。

 

JDK8之后新出现的回收器主要有:

 

G1(Garbage-First):如上所述,G1是JDK9及之后版本的默认垃圾回收器,它试图在吞吐量和停顿时间之间找到平衡。

ZGC(Z Garbage Collector):ZGC是JDK 11中引入的一种低延迟垃圾回收器,它可以在不停止应用程序的情况下进行垃圾回收,适合对延迟要求极高的应用场景。

Shenandoah GC:Shenandoah GC是JDK 12中引入的实验性垃圾回收器,它也致力于在不影响应用程序运行的情况下进行垃圾回收,但与ZGC相比,它在实现上有所不同。

 

这些新的回收器都在不断地优化和改进中,以适应不同应用场景的需求。

 

9.怎么解决项目中OOM的?

解决项目中遇到的OOM(Out of Memory,内存溢出)问题,可以遵循以下步骤:

定位问题:

使用JVM提供的工具(如jconsole, jvisualvm, jmap, jhat等)或第三方性能分析工具来监控和分析内存使用情况。

查看应用程序的日志文件,查找可能的异常堆栈跟踪或内存使用警告。

进行堆转储(Heap Dump),使用MAT(Memory Analyzer Tool)或JProfiler等工具分析堆转储文件,查找内存泄漏或大量对象占用的原因。

 

优化代码:

 

审查并优化内存使用密集的代码段,特别是循环和递归中的内存分配。

使用更高效的数据结构和算法来减少内存占用。

及时释放不再使用的对象引用,避免内存泄漏。

对于大对象或大量数据,考虑使用流式处理或分页加载,而不是一次性加载到内存中。

 

调整JVM配置:

 

增加JVM的堆内存大小,使用-Xmx和-Xms参数设置最大和初始堆内存。

根据需要调整年轻代(Young Generation)和老年代(Old Generation)的比例。

选择合适的垃圾收集器,并调整其参数以优化性能。例如,对于需要低停顿时间的应用,可以考虑使用G1或ZGC垃圾收集器。

 

优化垃圾收集:

 

监控垃圾收集的行为,包括GC的频率、持续时间和回收效果。

根据监控结果调整垃圾收集器的参数,如触发条件、堆分区大小等。

尝试使用不同的垃圾收集器策略,找到最适合应用程序的配置。

 

资源管理和优化:

 

确保应用程序有足够的物理内存和适当的资源配额。

在多用户或多服务的环境中,合理分配和管理资源,避免资源争用和过度分配。

 

代码重构和架构设计:

 

对于长期存在内存问题的项目,考虑进行代码重构或重新设计系统架构。

引入微服务架构、事件驱动架构等现代设计模式,以提高系统的可扩展性和可维护性。

 

异常处理和容错机制:

 

在代码中添加适当的异常处理逻辑,以便在发生OOM时能够优雅地处理错误并释放资源。

实现容错机制,如重试逻辑、降级处理、资源隔离等,以提高系统的健壮性和可用性。

 

持续监控和维护:

 

建立持续的性能监控和报警机制,及时发现并解决内存问题。

定期对应用程序进行压力测试和性能测试,以评估其稳定性和性能。

跟踪最新的JVM更新和补丁,及时应用以提高系统稳定性和安全性。

 

通过以上步骤,你可以系统地解决项目中遇到的OOM问题,并优化应用程序的内存使用效率和性能。

 

mysql

有一种说法,单表数据量超过2000w, innodb性能就会降低,为什么?

 

InnoDB中B+树索引对性能的影响主要体现在以下几个方面:

 

查询效率:B+树索引通过保持数据的有序性,支持高效的查找操作。然而,随着数据量的增加,B+树的高度也会增加,导致查询时需要遍历更多的节点,从而增加磁盘I/O操作的次数,降低查询效率。

范围查询和排序:B+树的叶子节点之间通过指针相连,形成有序链表,这支持了范围查询和排序操作。但在数据量庞大的情况下,范围查询可能需要遍历大量的叶子节点,导致性能下降。

空间利用率:B+树非叶子节点只存储索引键,不存储数据,这提高了空间利用率。然而,当数据量极大时,索引本身也会占用大量的磁盘空间,可能影响其他数据的存储和查询效率。

更新操作:插入、删除和更新数据时,B+树索引需要进行相应的调整以维护索引的完整性和有序性。在数据量大时,这些操作可能更加复杂和耗时,影响数据库的整体性能。

 

总结:InnoDB中B+树索引通过提高查询效率和支持范围查询、排序等操作来提升数据库性能,但随着数据量的增加,B+树的高度增加和索引本身的存储需求也可能导致性能下降。

 

假如有张大表,原本用的自增主键,查询逻辑也是用的自增主键,怎么分成多张表?

 

 

对于一张原本使用自增主键的大表,并且查询逻辑也是基于这个自增主键进行的,你可以通过以下几种策略来将其拆分成多张表以提高性能和可管理性:

 

1. 基于自增主键的范围分表

思路:根据自增主键的范围将表拆分成多个子表。例如,如果主键是从1开始自增的,你可以将主键范围分为几个区间,每个区间对应一个子表。

实现:

估算每个子表应包含的主键范围,例如,第一个子表包含主键1-10000,第二个子表包含主键10001-20000,以此类推。

创建新的子表,每个子表的结构与原始表相同,但只包含特定范围内的主键数据。

编写应用程序逻辑或数据库触发器,在插入新记录时,根据主键值将其分配到正确的子表中。

修改查询逻辑,以便在查询时根据主键范围确定要查询的子表。

2. 基于自增主键的哈希取模分表

思路:使用自增主键的哈希值进行取模运算,以确定记录应该存储在哪个子表中。

实现:

选择一个哈希函数(如MD5、SHA1等),将自增主键作为输入计算哈希值。

对哈希值进行取模运算(模数为子表的数量),得到的余数即为子表的编号。

根据子表编号创建相应的子表,并将记录插入到对应的子表中。

查询时,先计算主键的哈希值和取模结果,然后查询对应的子表。

3. 使用分区表(如果数据库支持)

思路:如果数据库支持分区表功能(如MySQL的分区表),则可以直接在数据库层面实现表的分区,而无需在应用层面进行复杂的逻辑处理。

实现:

根据数据库的分区表语法,定义分区键(在这种情况下,可以是自增主键)。

选择分区策略(如范围分区、哈希分区等),并定义分区边界或分区数量。

数据库将自动根据分区键的值将记录存储到相应的分区中。

查询时,数据库会优化查询计划,只访问包含所需数据的分区。

注意事项

数据一致性:在分表过程中,需要确保数据的一致性和完整性。例如,在拆分表之前,可以考虑暂停数据写入操作,并在拆分完成后进行验证。

主键冲突:在分表后,每个子表仍然需要保持其主键的唯一性。如果使用自增主键,并且子表是独立维护的,则每个子表的主键生成器需要单独配置,以避免冲突。

查询性能:分表的主要目的是提高查询性能。因此,在分表后,需要评估查询性能是否有所提高,并根据需要进行优化。

应用层修改:在分表后,应用程序可能需要修改以支持多表查询和数据路由。这可能需要额外的开发工作和测试。

 

mq 是如何保证消息不丢失的?

 

MQ保证消息不丢失的方法主要包括以下几种:

持久化机制:将消息持久化到磁盘上,确保在消息队列崩溃或重启后,消息仍然可靠地保存在磁盘上。这包括持久化交换器、持久化队列和持久化消息。

消息确认机制:在消息消费者接收到消息后,发送确认消息给消息队列,告知消息已经成功处理。如果消息队列在一定时间内没有收到确认消息,就会将消息重新发送给其他消费者,确保消息的可靠处理。

冗余备份机制:通过在多个消息队列服务器之间进行消息复制和备份,确保即使某个消息队列服务器发生故障,消息仍然能够被其他服务器接收和处理。

事务机制:在消息发送和消费过程中,使用事务机制确保消息的原子性,即要么消息被完整地发送和消费,要么不进行任何操作。如果消息发送或者消费失败,可以回滚事务,保证消息的可靠性。

 

这些机制共同作用,可以尽可能地提高MQ消息传输的可靠性,但并不能百分之百地保证消息不丢失。在实际应用中,还需要考虑其他因素,如网络故障、硬件故障等情况,并采取相应的容错机制来保证消息的可靠传输。

 

当消费者在消费消息的过程中宕机时,消息是否会丢失取决于消息队列(MQ)系统的具体实现和配置。

 

在大多数现代消息队列系统中,如Apache Kafka、RabbitMQ、RocketMQ等,都提供了多种机制来确保消息的可靠性,包括持久化、消息确认、重试机制等。

 

持久化:消息队列系统通常会将消息持久化到磁盘上,以防止系统崩溃或重启导致的数据丢失。这意味着即使消费者宕机,已经持久化的消息也不会丢失。

 

消息确认机制:消费者成功处理消息后,需要向消息队列系统发送确认消息(ACK)。如果消息队列系统在一定时间内没有收到确认消息,它可能会认为消费者处理消息失败,并重新发送消息给另一个消费者或将其保留在队列中以供后续处理。这种机制有助于防止因消费者宕机而导致的消息丢失。

 

重试机制:当消费者处理消息失败时(包括因宕机导致的失败),消息队列系统通常会尝试将消息重新发送给消费者进行重试。重试次数和间隔可以根据需要进行配置。

 

消费者组:在消费者组模式下,多个消费者可以共同消费同一个队列中的消息。如果一个消费者宕机,其他消费者可以接替其工作,继续消费队列中的消息,从而确保消息的正常消费。

 

然而,需要注意的是,即使有了这些机制,也不能完全保证消息在消费者宕机时不会丢失。例如,如果消费者已经接收到了消息但还没有来得及处理就宕机了,并且消息队列系统没有收到确认消息,那么这条消息可能会被重新发送。但是,在某些情况下(如消息队列系统也发生故障),这条消息可能会永久丢失。

 

因此,在使用消息队列系统时,需要根据具体的应用场景和需求来选择合适的配置和策略,以确保消息的可靠性和系统的稳定性。同时,也需要对可能发生的故障和异常情况进行充分的测试和验证,以确保系统能够正确地处理这些情况并避免数据丢失。

 

死信队列,了解吗?什么情况下会变成死信

 

死信队列用于存储那些无法被正常消费的消息。消息变成死信的情况主要包括以下几种:

 

消息过期:设置了消息的过期时间,消息在队列中超过这个时间后仍未被消费。

消息被拒绝:消费者消费消息后,拒绝该消息并且不再重新放回队列(即拒绝时设置requeue参数为false)。

队列达到最大长度:设置了队列的最大可承载消息数量,当消息数量超出这个限制时,新消息会被路由到死信队列中。

 

一句话总结:死信队列存储的是因过期、被拒绝或队列超限而无法正常消费的消息。

 

声明式事务失效场景?方法前加final会失效吗,原理是什么?

声明式事务失效的场景有多种,包括但不限于:

 

事务传播行为使用不当(如PROPAGATION_SUPPORTS可能导致非事务性执行)。

方法内部捕获异常后未正确抛出(事务只在未检查异常时回滚)。

访问修饰符问题(如非public方法,在基于代理的AOP中可能不会被事务代理拦截)。

调用同一类中的其他方法(基于代理的AOP不会拦截类内部方法调用)。

 

关于方法前加final是否会导致声明式事务失效:

 

是的,在Spring AOP的默认配置下,如果方法被声明为final,则基于接口的代理(JDK动态代理)和基于类的代理(CGLIB代理)都无法对该方法进行拦截,因为final方法不可被覆盖。由于Spring的声明式事务管理通常是通过AOP代理来实现的,因此如果方法被声明为final,则不会被事务代理拦截,从而可能导致事务失效。

 

原理:Spring的声明式事务管理是基于AOP(面向切面编程)的,它通过在目标方法执行前后插入事务的开始、提交或回滚逻辑来实现事务管理。如果方法被声明为final,则无法被AOP代理所拦截,因为AOP代理需要能够替换或包装原始方法调用。由于final方法不能被继承或覆盖,AOP代理无法插入必要的逻辑来管理事务。

 

 

MySQL中,一个更新语句(UPDATE语句)的底层执行模式涉及多个步骤和组件

 

这些步骤在MySQL的不同存储引擎(如InnoDB、MyISAM等)中可能有所不同,但大体上遵循相似的逻辑。以下是一个典型更新语句在InnoDB存储引擎中的执行流程概述:

解析和预处理:

MySQL首先解析SQL语句,检查语法错误,并解析出语句中的表和列名等信息。
预处理阶段可能包括权限检查、字符集转换等。

查询优化:

MySQL优化器会根据查询语句、表的统计信息和索引等来决定如何执行这个查询,包括选择最优的索引、确定连接表的顺序等。
对于UPDATE语句,优化器会生成一个执行计划,包括哪些行需要被更新,以及如何快速找到这些行。

打开表:

MySQL会打开所有涉及的表,加载表的元数据(如表结构、索引信息等)到内存中。

锁定:

InnoDB等支持事务的存储引擎会在此阶段对需要更新的行进行锁定,以防止其他事务的并发修改。
锁的类型可能包括行锁、间隙锁、记录锁等,具体取决于事务的隔离级别和索引的使用情况。

数据更新:

根据执行计划,MySQL会遍历需要更新的行,并应用UPDATE语句中指定的新值。
如果涉及到了索引列的更新,那么相应的索引也会被更新。

更改日志记录:

InnoDB等存储引擎会记录对数据的更改到重做日志(redo log)中,以确保在数据库崩溃时能够恢复这些更改。
对于某些更改,可能还需要记录到二进制日志(binlog)中,以便进行复制或恢复操作。

事务提交:

如果UPDATE语句是在事务中执行的,那么在所有更改都成功应用后,事务会被提交。
提交过程包括将重做日志中的更改刷新到磁盘(如果需要的话),并释放相关的锁。

结果返回:

对于UPDATE语句,MySQL通常会返回一个表示受影响的行数的值。

需要注意的是,这个过程是一个高度简化的概述,实际执行时可能涉及更多的细节和复杂的交互。此外,不同的存储引擎(如MyISAM)在执行UPDATE语句时可能会有所不同,尤其是在锁定和事务管理方面。

最后,要强调的是,更新操作可能会对数据库性能产生显著影响,特别是在涉及大量数据的情况下。因此,在设计数据库和编写更新语句时,需要仔细考虑索引的使用、事务的隔离级别以及并发控制等因素。

Spring Boot 的自动装配

Spring Boot 的自动装配(Auto-configuration)是其核心特性之一,它极大地简化了 Spring 应用的初始搭建以及开发过程。自动装配是 Spring Boot 通过其“starter”依赖来实现的,这些 starter 依赖会自动配置 Spring 应用所需的默认设置。Spring Boot 在启动时会自动根据你添加的 jar 依赖来配置你的 Spring 应用。

工作原理

 

Spring Boot 的自动装配主要通过以下几个关键组件来实现:

 

@SpringBootApplication:这是一个方便的注解,它包含了 @Configuration、@EnableAutoConfiguration、@ComponentScan 这三个注解。其中,@EnableAutoConfiguration 注解是自动装配的关键,它告诉 Spring Boot 基于添加的 jar 依赖自动配置 Spring 应用。

 

spring-boot-autoconfigure 模块:这个模块包含了 Spring Boot 的自动配置代码。它会根据 classpath 下的类、属性文件以及其他因素来推断并自动配置 Spring 应用。

 

条件注解(Conditional annotations):Spring Boot 使用了 Spring Framework 4.0 引入的条件注解(如 @ConditionalOnClass 和 @ConditionalOnMissingBean)来精细控制自动配置的行为。条件注解允许基于类路径下是否存在某个类、某个 bean 是否存在等条件来启用或禁用配置。

 

自动配置的类:Spring Boot 提供了大量的自动配置类,这些类通常位于 spring-boot-autoconfigure 模块的 org.springframework.boot.autoconfigure 包下。每个自动配置类都使用条件注解来定义其启用条件。

 

自定义自动装配

 

虽然 Spring Boot 的自动装配功能非常强大,但在某些情况下,你可能需要自定义自动装配的行为。Spring Boot 提供了几种方法来实现这一点:

 

exclude 属性:在 @SpringBootApplication 或 @EnableAutoConfiguration 注解中,你可以使用 exclude 属性来排除不需要的自动配置类。

 

spring.autoconfigure.exclude 属性:在 application.properties 或 application.yml 文件中,你可以使用 spring.autoconfigure.exclude 属性来排除不需要的自动配置类。

 

自定义 Starter:你可以创建自己的 starter 依赖,并在其中定义自己的自动配置类。这通常用于创建可复用的、针对特定场景的自动配置。

 

条件注解:在编写自定义自动配置类时,你可以使用条件注解来定义其启用条件,以确保它只在满足特定条件时才会被应用。

 

通过这些机制,Spring Boot 的自动装配功能不仅简化了 Spring 应用的配置过程,还提供了足够的灵活性来适应各种复杂场景。

 

在Spring框架的上下文中,实际上并没有直接对应于“一级缓存”、“二级缓存”和“三级缓存”

在Spring框架的上下文中,实际上并没有直接对应于“一级缓存”、“二级缓存”和“三级缓存”这样的术语,特别是当它们与“循环依赖”相关联时。这些术语更多地与Hibernate等ORM框架的缓存机制相关。然而,为了回答你的问题,我们可以从Spring如何解决循环依赖的角度来探讨一下它内部的缓存机制。

在Spring中,循环依赖通常发生在多个bean相互依赖,并且它们之间的依赖关系形成了一个闭环。Spring的IoC容器通过三级缓存机制来解决单例bean的循环依赖问题。这里的“三级缓存”并不是传统意义上的缓存存储数据的层次结构,而是Spring内部用于解决循环依赖的一种策略。

Spring解决循环依赖的三级缓存机制

一级缓存(Singleton Objects):

这是一个Map结构,用于存储已经完全初始化好的bean实例。当一个bean的所有依赖都被注入并且初始化完成后,它会被放入这个Map中。
键是bean的名称,值是bean的实例。

二级缓存(Early Singleton Objects):

这也是一个Map结构,但它存储的是bean的早期引用(即bean的实例已经创建,但还没有完成依赖注入和初始化)。
当Spring在创建bean的过程中检测到循环依赖时,它会将bean的早期引用放入这个Map中,以便其他bean在依赖注入时能够引用到这个早期引用。
键是bean的名称,值是bean的早期引用(即bean的实例,但可能还没有完成初始化)。

三级缓存(Singleton Factories):

这是一个Map结构,但它存储的是ObjectFactory对象,而不是bean的实例。ObjectFactory是一个接口,用于创建bean的实例。
当Spring在创建bean的过程中,它会先检查三级缓存中是否存在对应的ObjectFactory。如果存在,则通过ObjectFactory来获取bean的实例(这实际上是懒加载的方式,因为只有在真正需要时才会调用ObjectFactory来创建bean)。
如果在创建bean的过程中检测到循环依赖,并且二级缓存中还没有该bean的早期引用,Spring会将一个ObjectFactory放入三级缓存中。这个ObjectFactory负责在需要时创建bean的实例。
当其他bean需要注入这个bean时,Spring会首先尝试从二级缓存中获取早期引用。如果二级缓存中没有,它会检查三级缓存中的ObjectFactory,并通过ObjectFactory来创建bean的实例,然后将其放入二级缓存中,以便后续使用。

需要注意的是,这里的“三级缓存”是Spring内部用于解决循环依赖的一种机制,并不是传统意义上的缓存存储数据的层次结构。在Spring中,并没有直接对应于“一级缓存”、“二级缓存”和“三级缓存”来存储数据以提高访问性能的缓存机制。如果你需要这样的缓存机制,你可能需要考虑使用Spring Cache或其他缓存解决方案。

 

mysql意向锁

意向锁(Intention Locks)是一种在数据库管理系统中用于协调事务对数据库对象并发访问的锁定机制。它主要用于表明事务在更高层次(如表级别)上的锁定意图,以便更有效地管理多个事务对同一数据资源的访问。以下是对意向锁的详细解析:

一、定义与作用

意向锁本身并不直接锁定数据对象,而是用于表示事务所需的锁定级别,以协调并发事务对数据库对象的访问。通过意向锁,数据库管理系统可以更好地掌握各个事务对数据库对象的锁定情况,避免发生死锁等并发问题。

二、类型

在意向锁的层次结构中,主要有两种类型的锁定级别:

意向共享锁(Intent Shared Lock,简称IS):

表明事务将要获取一个共享锁。
多个IS锁可以共存,即多个事务可以共享相同的资源。

意向排他锁(Intent Exclusive Lock,简称IX):

表明事务将要获取一个排他锁。
一个IX锁与多个IS锁是互斥的,即只有一个事务可以获取到IX锁。
三、应用场景

意向锁在多粒度锁定系统中非常有用,特别是在处理行级锁和表级锁的关系时。例如,在MySQL的InnoDB存储引擎中,当一个事务需要在表的多行上设置锁时,如果表已被其他事务锁定,意向锁就可以帮助协调这种关系。通过意向锁,数据库可以判断一个事务是否能够在不与其他事务冲突的情况下对表中的行进行锁定。

四、优势

提高性能:

意向锁减少了数据库在判断锁冲突时的开销。在没有意向锁的情况下,数据库可能需要遍历表中的每一行来检查是否有锁存在。而有了意向锁后,数据库只需要检查表级别的意向锁即可。

避免死锁:

意向锁有助于数据库更好地管理锁的依赖关系,从而在一定程度上避免死锁的发生。
五、示例

假设有两个事务A和B,事务A正在对表中的某一行进行更新操作(需要行级排他锁),同时事务B想要对整个表进行锁定(需要表级排他锁)。如果没有意向锁,事务B在尝试锁定表时可能需要遍历表中的所有行来检查是否有行级锁存在,这会导致效率低下。而有了意向锁后,事务A在获取行级排他锁的同时会在表上设置一个IX锁,事务B在尝试锁定表时会发现表上的IX锁,从而知道表中已有行被锁定,因此事务B会被阻塞,直到事务A释放锁为止。

六、总结

意向锁是数据库管理系统中一种重要的锁定机制,它用于表明事务在更高层次上的锁定意图,并协调多个事务对同一数据资源的并发访问。通过意向锁,数据库可以更有效地管理锁的依赖关系,提高性能并避免死锁等并发问题。

消息的幂等性保证主要可以通过以下几种方式实现:

 

使用唯一标识符:

 

在消息生产时,为每个消息生成一个唯一的标识符(如UUID或自增ID)。

在消息消费端,设置一个存储系统(如数据库、Redis等)来存储已处理过的消息ID。

当消息被消费时,首先检查存储系统中是否已存在该消息的ID。如果存在,则忽略该消息;如果不存在,则执行业务逻辑并将该消息ID添加到存储系统中。

 

数据库唯一索引:

 

在将消息处理结果存储到数据库时,通过创建唯一索引来避免重复插入。例如,对业务ID设置唯一约束。

 

业务逻辑检查:

 

在处理消息之前,首先检查业务状态或已有的记录,以决定是否需要处理该消息。

 

消息队列的幂等性支持:

 

某些消息队列系统(如AWS SQS)支持特殊的属性或配置来帮助实现幂等性。

 

消息确认和重试机制:

 

结合消息的ACK机制和重试策略,确保只有成功处理的消息才被确认消费。

 

分布式锁:

 

在处理消息之前,尝试获得一个分布式锁,并以消息ID或指纹作为锁的键。如果能够获取锁,则处理消息;否则,跳过处理。

 

幂等表:

 

建立一张专门的表来记录已经处理的消息ID或特征信息,每次处理消息前都查询幂等表。

 

消息指纹:

 

为消息内容生成一个唯一的指纹(如MD5、SHA等散列值),用这个指纹来检测是否重复消费。

 

这些方法可以根据具体的业务场景和需求进行选择和组合,以达到保证消息幂等性的目的。在实际应用中,还需要考虑系统的并发性、性能要求和复杂性等因素。

 

Gateway一词具有多重含义,以下是对其主要含义的详细解析:

一、基本含义

英文释义:Gateway在英文中主要用作名词,意为“门、入口、通道”等。它还可以指“手段、途径”或计算机领域中的“网关、网间连接器”。

中文释义:根据上下文不同,Gateway可翻译为“大门”、“入口”、“网关”等。

二、具体应用场景

1. 通用含义

作为“门、入口、通道”时,Gateway通常指物理或抽象上的通道,如建筑物的大门、通往某地的必经之路等。例如,“He walked across the park and through a gateway.”(他走过那个公园,并穿过一个大门口。)

2. 计算机领域

网关(Gateway):在网络技术中,Gateway是一种复杂的网络互连设备,也称为网间连接器或协议转换器。它在网络层以上实现网络互连,仅用于两个高层协议不同的网络互连。网关的主要作用是对收到的信息进行重新打包,以适应目的系统的需求。

具体作用:

路由:负责将来自客户端的请求路由到正确的微服务或网络资源。

负载均衡:将请求分发到多个相同或不同的服务实例,提高系统的性能和可用性。

安全性:处理身份验证、授权和加密等安全性任务。

监控和日志:收集请求和响应信息,用于监控和日志记录。

协议转换:将外部请求从一个协议转换为另一个协议。

缓存:实现请求和响应的缓存,降低系统负载,提高响应速度。

限流:控制请求流量,防止系统过载。

断路器模式:在微服务故障时防止请求继续传递,提高系统稳定性。

API管理:集中管理和监控微服务的API。

3. 其他领域

在特定语境下,Gateway还可能指某种特定设备或服务的入口,如“家庭网关(Home Gateway)”用于家庭网络的互连和管理。

三、短语搭配与例句

短语搭配:如Security Gateway(安全网关)、Default Gateway(默认网关)、Border Gateway Protocol(边界网关协议)等。

例句:“A good education is the gateway to success.”(良好的教育是通往成功之路。)这句话中,Gateway被用作比喻,表示通往成功的方法和途径。

 

综上所述,Gateway是一个多义词,其含义根据具体应用场景而异。在计算机领域,它特指一种复杂的网络互连设备;在其他语境中,则可能指物理或抽象上的通道、手段或途径。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值