专题一:数论

一、最大公约数gcd,最小公倍数lcm

long long gcd(long long a,long long b)
{
    if (b==0)
        return a;
    else return gcd(b,a%b);
}
long long lcm(long long a,long long b)
{
    return a * b / gcd(a, b);
}

二、快速幂

int Pow(int a,int b)
{ //快速求a^b ,复杂度 log(b)  
    if(b == 0)   return 1;
    if(b & 1)
    { //b是奇数
        return a * Pow(a,b-1);
    }
    else 
    {
        int t = Pow(a,b/2);  
        return t * t;
}
  • 快速幂取余(做题遇到的,顺便整理出来)
ll quick_pow(ll a,ll b,ll mod)
{
    ll ans=1;
    while(b)
    {
        if(b&1)ans=(ans*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return ans;
}

三、中国剩余定理

给定两两互质的正整数n1,n2,...,nk,要求找到最小的正整数x,满足方程组x≡ai(mod ni) (i=1,2...k)

•算法步骤:

令n=n1n2...nk, mi=n/ni

显然gcd(mi,ni)=1,利用扩展欧几里德算法计算出xi满足mixi≡1(mod ni)

x = (a1x1m1+a2x2m2+...+akxkmk) mod n

此方程组任意两个解模 n 同余,因此x就是最小的(找了找,没存板,含泪码字)

void exgcd(ll a,ll b,ll &x,ll &y)
{
    if(!b)
    {
        x=1,y=0;
        return a;
    }
    ex_gcd(a,b%a,y,x);
    y-=(b/a)*x;
}
ll exCRT()
{
    ll ans=0,lcm=1,x,y;
    for(int i=1;i<=k;i++)lcm*=b[i];
    for(int i=1;i<=k;i++){
        t[i]=lcm/b[i];
        ex_gcd(t[i],b[i],x,y);
        x=(x%b[i]+b[i])%b[i];
        ans=(ans+t[i]*a[i]%lcm*x%lcm)%lcm;
    }
    return (ans+lcm)%lcm;
}

例题:POJ-1006Biorhythms

简述:人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。

思路: 
(n+d)%23=p; (n+d)%28=e; (n+d)%33=i 

分别代入求得:(5544×p+14421×e+1288×i)% lcm(23,28,33) =n+d 
即为n=(5544×p+14421×e+1288×i-d)%21252

#include<iostream>
using namespace std;
int main()
{
    int p,e,i,d,t=1;
    while(cin>>p>>e>>i>>d)
    {
        if(p==-1&&e==-1&&i==-1&&d==-1)
            break;
        int x=(5544*p+14421*e+1288*i-d)%21252;
        if(x<=0) printf("Case %d: the next triple peak occurs in %d days.\n",t++,21252+x);
        else printf("Case %d: the next triple peak occurs in %d days.\n",t++,x);
    }
    return 0;
}

四、欧拉函数

通式:对任意n: φ(n) = n(1-1/p1)(1-1/p2)...(1-1/pn)

其中p1, p2……pn为x的所有质因数,x是不为0的整数。

4.1费马小定理

假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)

4.2求单个数的欧拉函数

int getphi(int n) {
    int ans = n;
    for (int i = 2; i * i <= n; ++i) {
        if (n % i == 0) {
            ans -= ans / i;
            while (n % i == 0) {
                n /= i;
            }
        }
    }
    if (n > 1) {
        ans -= ans / n;
    }
    return ans;
}

4.3拓展欧拉函数

4.4 Miller-rabin算法(快速判断一个正整数是否为素数)

 根据费马小定理,如果p是素数,则a^(p-1)≡1(mod p)对所有的a∈[1,n-1]成立。所以如果在[1,n-1]中随机取出一个a,发现不满足费马小定理,则证明n必为合数。 但是每次尝试过程中还做了一个优化操作,以提高用少量的a检测出p不是素数的概率。这个优化叫做二次探测。它是根据这个定理:如果p是一个素数,那么对于x(0<x<p),若x^2%p=1,则x=1或p-1。

bool witness(LL a,LL n,LL u,LL t){
	LL x0 = power_mod(a,u,n),x1;
	for(int i=1 ;i<=t ; ++i){
		x1 = mulmod(x0,x0,n);
		if(x1==1 && x0!=1 && x0!=n-1)
			return false;
		x0 = x1;
	}
	if(x1 !=1)return false;
	return true;
}

 为了计算a^(n-1)mod n,我们把n-1分解为x* 2^t的形式,其中t>=1且x是奇数;因此,a^(n-1)≡(a^x)^(2^t)(mod n),所以可以通过先计算a^x mod n,然后对结果连续平方t次来计算a^(n-1) mod n。一旦发现某次平方后mod n等于1了,那么说明符合了二次探测定理的逆否命题使用条件,立即检查x是否等于1或n-1,如果不等于1也不等于n-1则可直接判定p为合数。

4.5 遇到的一些例题

POJ-2407 Relatives

思路:给出一个数n,求1~n中与该数互质的数的个数。直接套用欧拉公式判断,就不附上代码了。

POJ-2480 Longge's problem

思路:即求1~n各数与n的最大公约数之和。枚举法,x∈[1,√n],求满足gcd(k/x,n/x)==1中k的个数。

#include<iostream>
using namespace std;
ll y(ll n)
{
	ll ans=n,x=n,r=sqrt(n);
	for(ll i=2;i<=r;i++)
	{
		if(x%i==0) ans-=ans/i;
		while(x%i==0)
            x=x/i;
	}
	if(x>1)
        ans-=ans/x;
	return ans;
}
int main()
{
    ll n;
    while(scanf("%lld",&n)!=EOF)
    {
        ll sum=0,z=sqrt(n);
        for(ll i=1;i<=z;i++)
        {
            if(n%i==0)
            {
                sum+=y(n/i)*i;
                sum+=y(i)*(n/i);
            }
            if(i*i==n)
                sum-=y(n/i)*i;
        }
        printf("%lld\n",sum);
    }
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值