【小组专题一:数论入门:整数】数和序列 | 和与积 | 数学归纳与第二数学归纳


·|· 根据《初等数论及其应用》第六版第一章节整理的资料。
·|· 主要是 课件,类似学习清单,无或少有习题答案。
·|· 红色为课后作业部分,绿色为我当时讲的不好更改补充的地方。

【1.1 数和序列】

  • 良性性质:每个非空的正整数集合都有一个最小元。
    • 证明 2 \sqrt{2} 2 是无理数
  • 代数数:是整系数多项式的根。
  • 超越数:不能作为整系数多项式的根。
  • 最大取整函数[x],小于等于x的最大整数,满足 [ x ] ≤ x < [ x ] + 1 , 即 为 ⌊ x ⌋ [x]\le x<[x]+1,即为\lfloor x\rfloor [x]x<[x]+1,x
  • 实数x的分数部分{x}=x-[x],都有 { x } ∈ [ 0 , 1 ) \{x\}\in [0,1) {x}[0,1)
  • 丢番图逼近:实数 α \alpha α的前n个整数倍中至少有一个实数与最接近它的整数的距离小于 1 n \frac{1}{n} n1
  • 鸽笼原理/抽屉原理
  • 狄利克雷逼近定理: α \alpha α为实数,n为正整数,存在整数a,b, 1 ≤ a ≤ n 1\le a\le n 1an,使得 ∣ a α − b ∣ < 1 n |a\alpha -b|<\frac{1}{n} aαb<n1
  • 1.1.32 强狄利克雷逼近原理: α \alpha α为实数,n为正整数,存在整数a,b, 1 ≤ a ≤ n 1\le a\le n 1an,使得 ∣ a α − b ∣ ≤ 1 n + 1 |a\alpha -b|\le \frac{1}{n+1} aαbn+11
  • 序列: { a n } \{a_n\} {an}
  • 集合是可数的:有限的,或是无穷的但与正整数集合之间存在一一映射。否则集合是不可数的。
  • 整数集合是可数的。
  • 有理数集合是可数的。
  • [0,1]的实数集合是不可数的。
练习中的证明:
  • 1.1.11 [x]+[-x]的值
    • 1.1.12 [x]+[x+ 1 2 \frac{1}{2} 21]=[2x]
    • 1.1.13[x+y] ≥ \ge [x]+[y]
    • 1.1.15 [ x y ] ≥ [ x ] [ y ] \color{green}[xy]\ge[x][y] [xy][x][y]
    • [ [ x ] ] = [ x ] \color{red}[\sqrt{[x]}]=[\sqrt{x}] [[x] ]=[x ]
    • − [ − x ] = ⌈ x ⌉ \color{red}-[-x]=\lceil x\rceil [x]=x
  • 实数 α \alpha α的谱序列为 [ n α ] [n\alpha] [nα]
    • 如果 α ≠ β , 则 它 们 的 谱 序 列 不 同 \color{red}\alpha \ne \beta,则它们的谱序列不同 α=β
    • 1.1.41(贝蒂定律):每个正整数仅在 α 或 β \alpha或\beta αβ的谱序列中出现一次,当且仅当 α 和 β 是 正 无 理 数 且 1 α + 1 β = 1 \color{green}\alpha 和\beta 是正无理数且\frac{1} {\alpha}+\frac{1}{\beta}=1 αβα1+β1=1
  • 乌拉姆数:G(a,b)表示前两项为整数a,b。对于之后的每一项整数,这个整数是乌拉姆数当且仅当它能被唯一地写成两个不同的乌拉姆数之和。
    • G(1,2)={1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99… (OEIS:A002858)}
    • 1.1.43证明:存在无穷多个乌拉姆数。
    • 多 少 对 都 是 乌 拉 姆 数 的 连 续 整 数 ? \color{red}多少对都是乌拉姆数的连续整数?
    • 其 他 任 意 两 个 相 继 的 乌 拉 姆 数 之 和 是 否 可 以 是 另 外 一 个 乌 拉 姆 数 ? \color{red}其他任意两个相继的乌拉姆数之和是否可以是另外一个乌拉姆数?
    • 相 继 的 乌 拉 姆 数 之 间 的 差 有 多 大 ? 可 以 是 任 意 大 吗 ? \color{red}相继的乌拉姆数之间的差有多大?可以是任意大吗?
    • 关 于 小 于 整 数 n 的 乌 拉 姆 数 的 个 数 , 有 什 么 猜 测 ? \color{red}关于小于整数n的乌拉姆数的个数,有什么猜测? n
  • 1.1.44证明 e e e是无理数

【1.2 和与积】

  • ∑ n j = m c a j = c ∑ n j = m a j \underset{j=m}{\overset{n}{\sum}}ca_j=c\underset{j=m}{\overset{n}{\sum}}a_j j=mncaj=cj=mnaj
  • ∑ n j = m ( a j + b j ) = ∑ n j = m a j + ∑ n j = m b j \underset{j=m}{\overset{n}{\sum}}(a_j+b_j)=\underset{j=m}{\overset{n}{\sum}}a_j+\underset{j=m}{\overset{n}{\sum}}b_j j=mn(aj+bj)=j=mnaj+j=mnbj
  • ∑ n i = m ∑ q j = p a i b j = ( ∑ n i = m a i ) ( ∑ q j = p b j ) = ∑ q j = p ∑ n i = m a i b j \underset{i=m}{\overset{n}{\sum}}\underset{j=p}{\overset{q}{\sum}}a_ib_j=\Big(\underset{i=m}{\overset{n}{\sum}}a_i\Big)\Big(\underset{j=p}{\overset{q}{\sum}}b_j\Big)=\underset{j=p}{\overset{q}{\sum}}\underset{i=m}{\overset{n}{\sum}}a_ib_j i=mnj=pqaibj=(i=mnai)(j=pqbj)=j=pqi=mnaibj
  • 等比数列求和公式的推导
    • S = ∑ n j = 0 a r j S=\underset{j=0}{\overset{n}{\sum}}ar^j S=j=0narj
  • Telescope(叠进的) ∑ ( a j − a j − 1 ) \sum(a_j-a_{j-1}) (ajaj1)
  • 1.2.7 三角数、四边形数、1.2.10 五边形数、1.2.12 六边形数、1.2.13 七边形数、1.2.15 四面体数
  • n ! = ∏ n i = 1 i n!=\underset{i=1}{\overset{n}{\prod}}i n!=i=1ni
课后练习:
  • 1.2.5 ∑ n k = 1 [ k ] \underset{k=1}{\overset{n}{\sum}}[\sqrt{k}] k=1n[k ]
  • 1.2.21 ∑ n k = 1 1 k ( k + 1 ) \underset{k=1}{\overset{n}{\sum}}\frac{1}{k(k+1)} k=1nk(k+1)1
  • ∑ n k = 2 1 k 2 − 1 \color{red}\underset{k=2}{\overset{n}{\sum}}\frac{1}{k^2-1} k=2nk211
  • 1.2.23 ∑ n k = 1 k 2 \underset{k=1}{\overset{n}{\sum}}k^2 k=1nk2
  • ∑ n k = 1 k 3 \color{red}\underset{k=1}{\overset{n}{\sum}}k^3 k=1nk3
  • ∑ n k = 1 k p \underset{k=1}{\overset{n}{\sum}}k^p k=1nkp 伯努利数
  • 1.2.27 求所有满足 x ! + y ! = z ! x!+y!=z! x!+y!=z!的正整数 x , y , z x,y,z x,y,z
  • 求所有满足 x ! + y ! + z ! = k ! x!+y!+z!=k! x!+y!+z!=k!的正整数 x , y , z , k x,y,z,k x,y,z,k
  • 1.2.28 ∏ n j = 2 ( 1 − 1 j ) \underset{j=2}{\overset{n}{\prod}}(1-\frac{1}{j}) j=2n(1j1)
  • ∏ n j = 2 ( 1 − 1 j 2 ) \color{red}\underset{j=2}{\overset{n}{\prod}}(1-\frac{1}{j^2}) j=2n(1j21)

【1.3 数学归纳法】

  • 弱数学归纳与第二数学归纳(强数学归纳)
课后练习(都用数学归纳或者第二数学归纳证明):
  • 1.3.3 证明 ∑ n k = 1 1 k 2 ≤ 2 − 1 n \underset{k=1}{\overset{n}{\sum}}\frac{1}{k^2}\le2-\frac{1}{n} k=1nk212n1
  • 1.3.10 证明 ∑ n j = 1 ( − 1 ) j − 1 j 2 = ( − 1 ) n − 1 n ( n + 1 ) 2 \color{red}\underset{j=1}{\overset{n}{\sum}}(-1)^{j-1}j^2=(-1)^{n-1}\frac{n(n+1)}{2} j=1n(1)j1j2=(1)n12n(n+1)
  • 1.3.22 如果 h ≥ − 1 h\ge -1 h1,则对于任意非负整数 n n n ,有 1 + n h ≤ ( 1 + h ) n \color{green}1+nh\le (1+h)^n 1+nh(1+h)n
  • 1.3.33 正实数 a 1 ⋯ a n a_1\cdots a_n a1an的算术平均和几何平均分别为 A = ( a 1 + ⋯ + a n ) n , G = ( a 1 a 2 ⋯ a n ) 1 n A=\frac{(a_1+\cdots +a_n)}{n},G=(a_1a_2\cdots a_n)^{\frac{1}{n}} A=n(a1++an)G=(a1a2an)n1 A ≥ G A\ge G AG何时成立?
  • 缺一个的 2 n × 2 n 2^n\times2^n 2n×2n可以被 L L L形状的片覆盖吗?如何覆盖?
    L形片覆盖附带自敲程序与效果图:(可能由于IDE编码不支持会乱码。)
    在这里插入图片描述
/*
 _            __   __          _          _
| |           \ \ / /         | |        (_)
| |__  _   _   \ V /__ _ _ __ | |     ___ _
| '_ \| | | |   \ // _` | '_ \| |    / _ \ |
| |_) | |_| |   | | (_| | | | | |___|  __/ |
|_.__/ \__, |   \_/\__,_|_| |_\_____/\___|_|
        __/ |
       |___/
*/
const int MAX = 1200;
string aa[MAX][MAX];

/**
┌─┐
│■│
└─┘
*/
void drawL(int zx,int zy,int yx,int yy,int ty){
    if(zx + 1 == yx){
        if(ty == 2){
            ///aa[zx][zy] = 'X';
            aa[zx][yy] = "│";
            aa[yx][zy] = "─";
            aa[yx][yy] = "┘";
        }else if(ty == 4){
            aa[zx][zy] = "│";
            ///aa[zx][yy] = 'X';
            aa[yx][zy] = "└";
            aa[yx][yy] = "─";
        }else if(ty == 1){
            aa[zx][zy] = "─";
            aa[zx][yy] = "┐";
            ///aa[yx][zy] = 'X';
            aa[yx][yy] = "│";
        }else if(ty == 3){
            aa[zx][zy] = "┌";
            aa[zx][yy] = "─";
            aa[yx][zy] = "│";
            ///aa[yx][yy] = 'X';
        }
        return ;
    }
    int heng = yx - zx + 1;
    int zong = yy - zy + 1;
    int hf1 = zx + heng/4;
    int hf2 = zx + heng/4 * 2;
    int hf3 = zx + heng/4 * 3;
    int hf4 = yx + 1;
    int zf1 = zy + zong/4;
    int zf2 = zy + zong/4 * 2;
    int zf3 = zy + zong/4 * 3;
    int zf4 = yy + 1;
    
    if(ty !=1)drawL(hf2,zy,hf4-1,zf2-1,4);
    if(ty !=2)drawL(zx,zy,hf2-1,zf2-1,3);
    if(ty !=3)drawL(hf2,zf2,hf4-1,zf4-1,2);
    if(ty !=4)drawL(zx,zf2,hf2-1,zf4-1,1);
    
    if(ty == 1)drawL(hf1,zf1,hf3-1,zf3-1,1);
    if(ty == 2)drawL(hf1,zf1,hf3-1,zf3-1,2);
    if(ty == 3)drawL(hf1,zf1,hf3-1,zf3-1,3);
    if(ty == 4)drawL(hf1,zf1,hf3-1,zf3-1,4);
}
void draw(int zx,int zy,int yx,int yy,int ta,int tb){
    if(zx + 1 == yx){
        if(ta == zx && tb == zy){
            ///aa[zx][zy] = 'X';
            aa[zx][yy] = "│";
            aa[yx][zy] = "─";
            aa[yx][yy] = "┘";
        }else if(ta == zx && tb == yy){
            aa[zx][zy] = "│";
            ///aa[zx][yy] = 'X';
            aa[yx][zy] = "└";
            aa[yx][yy] = "─";
        }else if(ta == yx && tb == zy){
            aa[zx][zy] = "─";
            aa[zx][yy] = "┐";
            ///aa[yx][zy] = 'X';
            aa[yx][yy] = "│";
        }else if(ta == yx && tb == yy){
            aa[zx][zy] = "┌";
            aa[zx][yy] = "─";
            aa[yx][zy] = "│";
            ///aa[yx][yy] = 'X';
        }
        return ;
    }
    int heng = yx - zx + 1;
    int zong = yy - zy + 1;
    int hf1 = zx + heng/2 - 1;
    int hf2 = zx + heng/2;
    int zf1 = zy + zong/2 - 1;
    int zf2 = zy + zong/2;
    int AA = 0;
    
    if(ta >= hf2 && tb >= zy && ta <= yx && tb <= zf1)draw(hf2,zy,yx,zf1,ta,tb),AA=1;      /// A1
    if(ta >= zx && tb >= zy && ta <= hf1 && tb <= zf1)draw(zx,zy,hf1,zf1,ta,tb),AA=2;      /// A2
    if(ta >= hf2 && tb >= zf2 && ta <= yx && tb <= yy)draw(hf2,zf2,yx,yy,ta,tb),AA=3;      /// A3
    if(ta >= zx && tb >= zf2 && ta <= hf1 && tb <= yy)draw(zx,zf2,hf1,yy,ta,tb),AA=4;      /// A4
    drawL(zx,zy,yx,yy,AA);
}

int main()
{
    ///IOS;
    int n;
    int ta,tb;
    cin >> n >> ta >> tb;
    n = pow(2,n);
    for(int i=1;i<=n;++i){
        for(int j=1;j<=n;++j){
            aa[i][j] = "";
            if(i==ta && j==tb)aa[i][j] = "■";
        }
    }
    
    draw(1,1,n,n,ta,tb);
    
    for(int i=1;i<=n;++i){
        for(int j=1;j<=n;++j){
            cout << aa[i][j];
            if(i!=ta || j!=tb)cout << " ";
        }
        puts("");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值