GEE学习总结(9)——像元二分法计算月度植被覆盖度(MODIS)

像元二分法计算植被覆盖度

通过MODIS的NDVI数据集MOD13Q1和像元二分法计算植被覆盖度

var multi_NDVI = ee.ImageCollection('MODIS/006/MOD13Q1')
                  .filterDate('2015-06-01', '2016-09-01')
                  .select('NDVI')
                  .max().divide(10000)
                  .clip(geometry);
                  
var ndviVis = {
  min: 0.0,
  max: 1,
  palette: [
    'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901',
    '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01',
    '012E01', '011D01', '011301'
  ],
};

//
Map.centerObject(geometry);

//统计影像中对应分位数的值
var num = multi_NDVI.reduceRegion({
  reducer:ee.Reducer.percentile([5,95]),
  geometry:geometry,
  scale:250,
  maxPixels:1e13
});
var min = ee.Number(num.get("NDVI_p5"));
var max = ee.Number(num.get("NDVI_p95"));
print(min)
print(max)


//根据统计值通过像元二分法计算植被覆盖度
var NDVI = ee.ImageCollection('MODIS/006/MOD13Q1')
                  .filterDate('2015-06-01', '2016-07-01')
                  .select('NDVI')
                  .max().divide(10000)
                  .clip(geometry);

var greaterPart = NDVI.gt(max);
var lessPart    = NDVI.lt(min);
var middlePart  = ee.Image(1).subtract(greaterPart).subtract(lessPart);

//计算FVC
var tempf1= NDVI.subtract(min).divide(max.subtract(min));

var FVC = ee.Image(1).multiply(greaterPart)
          .add(ee.Image(0).multiply(lessPart))
          .add(tempf1.multiply(middlePart));

Map.addLayer(FVC, ndviVis, 'FVC');
<think>好的,我需要帮助用户使用Google Earth Engine(GEE)进行植被覆盖度的空间特征分析。首先,我得回顾一下用户提供的引用内容,里面提到了植被覆盖度的定义、应用领域以及估算方法,包括回归模型、混合像分解法和机器学习法。用户现在想知道在GEE中具体怎么操作,特别是空间特征分析的方法教程。 首先,我应该考虑GEE的基本流程。通常,处理步骤包括数据选择、预处理、指数计算、模型应用、空间分析以及结果可视化。用户可能需要从数据开始,比如选择合适的遥感数据集,比如Landsat或MODIS。然后预处理步骤,比如去云、大气校正等,这对确保数据质量很重要。 接下来是计算植被指数。常用的有NDVI,但根据引用中的方法,可能需要使用混合像分解法,比如像二分法。这里需要解释如何将NDVI转换为FVC,可能涉及像二分法的公式:$FVC = \frac{NDVI - NDVI_{soil}}{NDVI_{veg} - NDVI_{soil}}$。用户需要确定NDVI_soil和NDVI_veg的阈值,可能需要经验值或区域特定数据。 然后是空间特征分析。这里可能需要利用GEE的空间统计工具,比如计算均值、标准差,或者使用纹理分析(GLCM)。此外,空间自相关分析,比如Moran&#39;s I,可能也是用户需要的,但不确定GEE是否直接支持,可能需要结合其他工具或库。 用户可能还需要导出结果进行进一步分析,比如在GIS软件中处理,或者生成图表。GEE的可视化功能可以帮助生成空间分布图,设置合适的调色板参数。 在教程资源方面,GEE官方文档和示例代码库是基础,另外推荐一些具体的社区教程,比如关于FVC计算的步骤,或者空间分析的案例。需要注意检查链接是否有效,或者是否存在相关的最新教程。 可能的相关问题包括如何选择NDVI的阈值,如何处理不同季节的数据差异,以及如何验证FVC的精度。这些都需要在回答中预见到,并可能作为相关问题提出。 最后,确保回答结构清晰,分步骤说明,并引用提供的参考文献。同时,按照用户要求生成相关问题,帮助用户深入探索。</think>### Google Earth Engine植被覆盖度空间特征分析方法 #### 一、数据准备与预处理 1. **数据集选择**:推荐使用Landsat 8/9或Sentinel-2数据,时间分辨率高且空间分辨率适中(10-30米)。示例加载Landsat 8数据: ```javascript var l8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") .filterDate(&#39;2020-01-01&#39;, &#39;2023-12-31&#39;) .filterBounds(geometry); // geometry为研究区域 ``` 2. **云掩膜与辐射校正**: ```javascript var maskClouds = function(image) { var qa = image.select(&#39;QA_PIXEL&#39;); var cloudBitMask = 1 << 3; return image.updateMask(qa.bitwiseAnd(cloudBitMask).eq(0)); }; var l8_filtered = l8.map(maskClouds); ``` #### 二、植被覆盖度计算 1. **NDVI计算**: $$ NDVI = \frac{NIR - Red}{NIR + Red} $$ ```javascript var addNDVI = function(image) { return image.addBands( image.normalizedDifference([&#39;SR_B5&#39;,&#39;SR_B4&#39;]).rename(&#39;NDVI&#39;) ); }; var l8_ndvi = l8_filtered.map(addNDVI); ``` 2. **像二分法计算FVC**: $$ FVC = \frac{NDVI - NDVI_{soil}}{NDVI_{veg} - NDVI_{soil}} $$ ```javascript var ndvi_soil = 0.2; // 裸土NDVI经验值 var ndvi_veg = 0.8; // 纯植被NDVI经验值 var fvc = l8_ndvi.mean().select(&#39;NDVI&#39;) .subtract(ndvi_soil) .divide(ndvi_veg - ndvi_soil) .clamp(0,1).rename(&#39;FVC&#39;); ``` #### 三、空间特征分析 1. **空间统计量计算**: ```javascript // 区域均值计算 var mean_value = fvc.reduceRegion({ reducer: ee.Reducer.mean(), geometry: geometry, scale: 30 }); // 空间标准差 var stdDev = fvc.reduceRegion({ reducer: ee.Reducer.stdDev(), geometry: geometry, scale: 30 }); ``` 2. **纹理特征分析**(使用GLCM): ```javascript var glcm = fvc.glcmTexture({ size: 3, // 窗口大小 average: true // 使用平均值代替原始值 }); print(glcm.select(&#39;NDVI_contrast&#39;)); // 输出对比度特征 ``` 3. **空间自相关分析**(需结合其他库): ```javascript // 需调用geemap等第三方库实现 var moransI = require(&#39;users/gena/packages:stats&#39;).MoransI; var weights = ee.Image.constant(1).toArray(); var result = moransI(fvc, weights, geometry, 30); ``` #### 四、可视化与输出 1. **分级渲染**: ```javascript Map.addLayer(fvc, { min:0, max:1, palette: [&#39;white&#39;,&#39;green&#39;] }, &#39;FVC&#39;); ``` 2. **时序变化分析**: ```javascript // 生成年际FVC变化曲线 var chart = ui.Chart.image.seriesByRegion({ imageCollection: l8_ndvi.map(function(img){ return img.select(&#39;NDVI&#39;); }), regions: geometry, reducer: ee.Reducer.mean(), scale: 30 }); print(chart); ``` #### 五、验证与精度评价 建议结合地面实测数据,使用混淆矩阵验证: $$ 精度 = \frac{TP+TN}{TP+TN+FP+FN} $$ 可通过采样点提取预测值与实测值进行回归分析[^1]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arcgiser

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值