基于TF-IDF的关键字提取

TF-IDF是一种衡量词语在文档中重要性的方法,由词频TF和反文档频率IDF组成。TF表示词在文章中出现的次数,IDF则考虑词在多少不同的文档中出现。TF-IDF值为TF乘以IDF,用于计算词汇的重要性。
摘要由CSDN通过智能技术生成

TF-IDF:衡量某个词对文章的重要性由TF和IDF组成
TF:词频(因素:某词在同一文章中出现次数)
IDF:反文档频率(因素:某词是否在不同文章中出现)
TF-IDF = TF*IDF

词频(TF)=某个词在当前文章中出现的次数 / 当前文章的总词数
反文档频率(IDF)=Log( 语料库的文档总数 / ( 包含该词的文档数+1 ) )

"""
Step 1:原始数据预处理
Step 2:产生IDF词表
Step 3:提取句子的关键词
"""
file_path_dir = "./data"
raw_path = './raw.data'
idf_path = './idf.data'


def read_file_handler(file_path):
    fd = open(file_path, 'r', encoding='utf-8')
    return fd


file_raw_out = open(raw_path, 'w', encoding='utf-8')

file_name = 0
for fd in os.listdir(file_path_dir):
    file_path = file_path_dir + '/' + fd
    content_list = []
    file_fd = read_file_handler(file_path)
    for line in file_fd:
        content_list.append(line.strip())  
在MATLAB中,要对文本数据(通常存储在`bagOfWords`或`bagOfDocuments`结构中)进行TF-IDF(Term Frequency-Inverse Document Frequency)分析,首先你需要准备好数据,通常是文本文件,然后将其转换为`bagOfWords`或`bagOfDocuments`结构。以下是一个简单的步骤概述: 1. **加载数据**: 使用`bagOfWords`或`bagOfDocuments`函数从文件中读取数据。例如,如果你有分词后的文本文件(每个行代表一句话),可以这样做: ```matlab filename = 'your_text_files.txt'; myBag = bagOfWords(filename); ``` 2. **预处理数据**: 清洗文本,去除停用词、标点符号等非关键词,并可能进行词干提取或词形还原。 3. **计算TF**: 使用`tfidf`属性可以直接计算TF-IDF值: ```matlab tfScores = tfidf(myBag); ``` 4. **查看结果**: 结果将是单词及其对应的TF-IDF得分。 5. **排序和选择关键特征**: 如果你只想看到最重要的词,可以使用`topkwords`或类似函数选取得分最高的前N个词。 ```matlab [sortedScores, idx] = sort(tfScores.VocabularyScore, 'descend'); topKeywords = sortedScores(1:10); % 前10个关键字 ``` 6. **可视化**: 可能还需要绘制热图或者条形图来显示文档中的关键词分布情况。 记得安装Text Analytics Toolbox(如果是老版本可能是`Text and Speech Toolbox`),如果没有安装,需先安装才能进行这些操作。 **相关问题**: 1. TF-IDF是什么意思,它的主要作用是什么? 2. 如何在MATLAB中添加自定义停用词? 3. 对于TF-IDF分析,如何进一步调整参数以优化结果? 4. Text Analytics Toolbox有哪些其他文本处理功能?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值