Pytorch深度学习快速入门教程 -- 土堆教程笔记(三)

现有网络模型的使用及修改

  • 以vgg16网络模型为例,最后分类是1000类,而使用的CIFAR10数据集需要最后分成10类,因此需要进行网络模型的修改。
    • 直接添加线性层
    • 修改最后线性层的参数
  • 代码
# torchvision.models.vgg16(pretrained: bool = False, progress: bool = True, **kwargs)
# pretrained (bool) – If True, returns a model pre-trained on ImageNet
# progress (bool) – If True, displays a progress bar of the download to stderr
# 参数pretrained:为True代表下载的网络模型中的参数已经在ImageNet数据集中训练好了,预训练
# 为False代表下载的网络模型中的参数为初始值,并没有训练过
# 参数progress为True,显示下载进度条
import torchvision

# ../代表返回上一路径,通常./就可以
# train_data = torchvision.datasets.ImageNet("./ImageNet", split="train", transform=torchvision.transforms.ToTensor(),download = True)
# RuntimeError: The archive ILSVRC2012_devkit_t12.tar.gz is not present in the root directory or is corrupted.
# You need to download it externally and place it in ./ImageNet.
from torch import nn

vgg16_false = torchvision.models.vgg16(pretrained=False)
vgg16_true = torchvision.models.vgg16(pretrained=True)
# print(vgg16_true)

train_data = torchvision.datasets.CIFAR10("./dataset", train=True, download=True,
                                          transform=torchvision.transforms.ToTensor())
# 如何改进现有的网络去实现自己的目标
# Vgg16训练好的模型,最后为1000类,而CIFAR10为10类

# 第一种实现,最后添加Linear层,将1000类转换成10类
# vgg16_true.add_module("add_linear", nn.Linear(1000, 10))
# print(vgg16_true)

# 第二种实现,在classifier中添加Linear层
# vgg16_true.classifier.add_module("add_linear", nn.Linear(1000, 10))
# print(vgg16_true)

# 第三种实现,直接修改VGG16模型最后Linear层的参数
print(vgg16_false)
vgg16_false.classifier[6] = nn.Linear(4096, 10)
print(vgg16_false)

网络模型的保存和读取

  • 方式一:网络结构 + 网络参数
  • 方式二:网络参数,以字典形式

保存

# 保存网络模型
import torch
import torchvision
from torch import nn

vgg16_false = torchvision.models.vgg16(pretrained=False)

# 保存方式一:网络模型结构 + 网络参数
# torch.save(vgg16_false, "vgg16_method1.pth")

# 保存方式二:网络参数,以字典形式(官方推荐)
# torch.save(vgg16_false.state_dict(), "vgg16_method2.pth")

# 针对自己定义的网络模型,采用方式一进行保存,会有陷阱
class MyModule(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
    def forward(self, x):
        x = self.conv1(x)
        return x
myModule = MyModule()
# 采用方式一保存
torch.save(myModule, "myModule_method1.pth")

读取

# 加载网络模型
import torch
import torchvision
from torch import nn
from model_save import *

# 加载方式一,对应保存方式一
# model = torch.load("vgg16_method1.pth")
# print(model)

# 加载方式二,对应保存方式二:获取网络参数字典,创建新的网络结构,导入网络参数
# model_dict = torch.load("vgg16_method2.pth")
# print(model_dict)
# vgg16 = torchvision.models.vgg16(pretrained=False)
# vgg16.load_state_dict(model_dict)
# print(vgg16)

# 针对自己定义的网络模型,采用方式一进行加载时,还需要添加网络模型的定义部分,实例部分不需要,否则报错
# 如果不想复制自定义网络模型的定义语句,可以添加一句from model_save import * 也可以
# class MyModule(nn.Module):
#     def __init__(self) -> None:
#         super().__init__()
#         self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
#     def forward(self, x):
#         x = self.conv1(x)
#         return x
myModule = torch.load("myModule_method1.pth")
# 如果不添加网络模型的定义,则会报错
# AttributeError: Can't get attribute 'MyModule' on <module '__main__' from xxx
print(myModule)

完整的模型训练套路

套路(一)

  • 代码
  • model.py
import torch
from torch import nn


class MyModule(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

# 测试网络
if __name__ == '__main__':
    myModule = MyModule()
    # 卷积层对输入的尺寸要求是(N, C, H ,W)
    input = torch.ones((64, 3, 32, 32))
    output = myModule(input)
    print(output.shape)
    # torch.Size([64, 10])
  • train.py
import torch.optim
import torchvision
from torch.utils.tensorboard import SummaryWriter

from model import *

# 准备数据集
from torch import nn
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(train_data_size))

# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络
# 标准是需要新建model.py,在其里面写网络模型的定义,并简单对网络进行测试
# 需要导入model.py文件,from model import *

# 创建网络模型
myModule = MyModule()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
learnng_rate = 1e-2 # 1 x 10 ^ (-2) = 0.01
optim = torch.optim.SGD(myModule.parameters(), lr = learnng_rate)

# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 2

# 添加tensorboard
writer = SummaryWriter("logs")

for i in range(epoch):
    print("__________第{}轮训练开始__________".format(i+1))
    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        outputs = myModule(imgs)
        loss = loss_fn(outputs, targets)
        # 优化器优化模型
        # 清零上一梯度
        optim.zero_grad()
        # 反向传播,获取梯度
        loss.backward()
        # 优化器根据梯度优化参数
        optim.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 添加item(),将tensor类型转化为纯数字
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 每轮训练完后,需要让网络在测试数据集上跑一遍,以测试数据集上的准确率来评估网络模型
    # 测试步骤开始,不需要进行调优
    total_test_loss = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = myModule(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss += loss.item()
    print("整体测试集上的Loss:{}".format(total_test_loss))
    writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
    total_test_step += 1

    # 保存每一轮训练的结果
    torch.save(myModule, "myModule_{}.pth".format(i+1))
    print("第{}轮训练后的模型已保存".format(i+1))

writer.close()
  • tensorboard显示
    在这里插入图片描述

套路(二)

  • 增加优化代码:添加测试数据集正确率
  • 正确率的计算思路
    在这里插入图片描述
  • argmax函数将outputs由概率形式转化为preds最高概率的下标形式
import torch
outputs = torch.tensor([[0.1, 0.2],
                        [0.05, 0.4]])

print(outputs.argmax(1)) # tensor([1, 1])
print(outputs.argmax(0)) # tensor([0, 1])

在这里插入图片描述
在这里插入图片描述

  • 上述正确率思路的代码实现
import torch

outputs = torch.tensor([[0.1, 0.2],
                        [0.3, 0.4]])


print(outputs.argmax(1)) # tensor([1, 1])

preds = outputs.argmax(1)

targets = torch.tensor([0, 1])
print(preds == targets) # tensor([False,  True])
print((preds == targets).sum()) # tensor(1)
  • 对上述完整套路(一)进行改进
# 添加整体测试集上的正确率total_test_accuray
import torch.optim
import torchvision
from torch.utils.tensorboard import SummaryWriter

from model import *

# 准备数据集
from torch import nn
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(train_data_size))

# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络
# 标准是需要新建model.py,在其里面写网络模型的定义,并简单对网络进行测试
# 需要导入model.py文件,from model import *

# 创建网络模型
myModule = MyModule()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
learnng_rate = 1e-2 # 1 x 10 ^ (-2) = 0.01
optim = torch.optim.SGD(myModule.parameters(), lr = learnng_rate)

# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 2

# 添加tensorboard
writer = SummaryWriter("logs")

for i in range(epoch):
    print("__________第{}轮训练开始__________".format(i+1))
    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        outputs = myModule(imgs)
        loss = loss_fn(outputs, targets)
        # 优化器优化模型
        # 清零上一梯度
        optim.zero_grad()
        # 反向传播,获取梯度
        loss.backward()
        # 优化器根据梯度优化参数
        optim.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 添加item(),将tensor类型转化为纯数字
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 每轮训练完后,需要让网络在测试数据集上跑一遍,以测试数据集上的准确率来评估网络模型
    # 测试步骤开始,不需要进行调优
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = myModule(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss += loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy += accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
    writer.add_scalar("total_test_accuracy", total_accuracy / test_data_size, total_test_step)
    total_test_step += 1

    # 保存每一轮训练的结果
    torch.save(myModule, "myModule_{}.pth".format(i+1))
    print("第{}轮训练后的模型已保存".format(i+1))

writer.close()

套路(三)

  • 关注自己网络中是否有特殊的层,有的话必须调用以下两句代码,没有的话也可以调用,不会影响代码运行,建议添加上,保证完整性。
  • 假设实例化后的网络为myModule
  • myModule.train() , 进入训练状态
  • myModule.eval(), 进入验证状态
  • 查看官方文档说明,仅对网络中特殊的层起作用,比如Dropout,BatchNorm。
Sets the module in training mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.
  • 对上述完整套路(二)进行改进
# 添加myModule.train() 和 myModule.eval()
# 针对网络中的特殊层起作用,比如Dropout,BatchNorm等
# 当不含这些层时,添加也不影响代码运行,建议添加,保证完整性。

import torch.optim
import torchvision
from torch.utils.tensorboard import SummaryWriter

from model import *

# 准备数据集
from torch import nn
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(train_data_size))

# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络
# 标准是需要新建model.py,在其里面写网络模型的定义,并简单对网络进行测试
# 需要导入model.py文件,from model import *

# 创建网络模型
myModule = MyModule()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
learnng_rate = 1e-2 # 1 x 10 ^ (-2) = 0.01
optim = torch.optim.SGD(myModule.parameters(), lr = learnng_rate)

# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 2

# 添加tensorboard
writer = SummaryWriter("logs")

for i in range(epoch):
    print("__________第{}轮训练开始__________".format(i+1))
    # 训练步骤开始
    myModule.train()
    for data in train_dataloader:
        imgs, targets = data
        outputs = myModule(imgs)
        loss = loss_fn(outputs, targets)
        # 优化器优化模型
        # 清零上一梯度
        optim.zero_grad()
        # 反向传播,获取梯度
        loss.backward()
        # 优化器根据梯度优化参数
        optim.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 添加item(),将tensor类型转化为纯数字
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 每轮训练完后,需要让网络在测试数据集上跑一遍,以测试数据集上的准确率来评估网络模型
    # 测试步骤开始,不需要进行调优
    myModule.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = myModule(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss += loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy += accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
    writer.add_scalar("total_test_accuracy", total_accuracy / test_data_size, total_test_step)
    total_test_step += 1

    # 保存每一轮训练的结果
    torch.save(myModule, "myModule_{}.pth".format(i+1))
    print("第{}轮训练后的模型已保存".format(i+1))

writer.close()

GPU训练

方式一

  • 针对哪些部分进行GPU训练呢?
    • 网络模型
    • 数据(输入,标注)
    • 损失函数
    • 添加.cuda()
  • 代码
if(torch.cuda.is_available()):
    myModule = myModule.cuda()
if(torch.cuda.is_available()):
    loss_fn = loss_fn.cuda()
if (torch.cuda.is_available()):
    imgs = imgs.cuda()
    targets = targets.cuda()
  • 针对完整套路(三)添加GPU后代码,及添加测试运行时间
# 网络模型
# 数据(输入, 标注)
# 损失函数
# .cuda()
import torch.optim
import torchvision
from torch.utils.tensorboard import SummaryWriter
import time

# 准备数据集
from torch import nn
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(train_data_size))

# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络
class MyModule(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

# 创建网络模型
myModule = MyModule()
if(torch.cuda.is_available()):
    myModule = myModule.cuda()

# 损失函数
loss_fn = nn.CrossEntropyLoss()
if(torch.cuda.is_available()):
    loss_fn = loss_fn.cuda()

# 优化器
learnng_rate = 1e-2 # 1 x 10 ^ (-2) = 0.01
optim = torch.optim.SGD(myModule.parameters(), lr = learnng_rate)

# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 2

# 添加tensorboard
writer = SummaryWriter("logs")
start_time = time.time()
for i in range(epoch):
    print("__________第{}轮训练开始__________".format(i+1))
    # 训练步骤开始
    myModule.train()
    for data in train_dataloader:
        imgs, targets = data
        if (torch.cuda.is_available()):
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs = myModule(imgs)
        loss = loss_fn(outputs, targets)
        # 优化器优化模型
        # 清零上一梯度
        optim.zero_grad()
        # 反向传播,获取梯度
        loss.backward()
        # 优化器根据梯度优化参数
        optim.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print(end_time - start_time)
            print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 添加item(),将tensor类型转化为纯数字
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 每轮训练完后,需要让网络在测试数据集上跑一遍,以测试数据集上的准确率来评估网络模型
    # 测试步骤开始,不需要进行调优
    myModule.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            if (torch.cuda.is_available()):
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs = myModule(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss += loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy += accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
    writer.add_scalar("total_test_accuracy", total_accuracy / test_data_size, total_test_step)
    total_test_step += 1

    # 保存每一轮训练的结果
    torch.save(myModule, "myModule_{}.pth".format(i+1))
    print("第{}轮训练后的模型已保存".format(i+1))

writer.close()
  • 如果电脑不带GPU,可以使用Google Colab这个平台训练代码。

方式(二)- 更常用

  • .to(device)

  • device = torch.device("cpu)

  • device = torch.device(“cuda”)

  • 当电脑上有多张显卡时: 指定显卡

  • device = torch.device(“cuda:0”)

  • device = torch.device(“cuda:1”)

  • 代码

# 网络模型
# 数据(输入, 标注)
# 损失函数
# .to(device)
# device = torch.device("cpu)
# device = torch.device("cuda")
# 当电脑上有多张显卡时: 指定显卡
# device = torch.device("cuda:0")
# device = torch.device("cuda:1")

import torch.optim
import torchvision
from torch.utils.tensorboard import SummaryWriter
import time

# 定义训练的设备
# device = torch.device("cuda")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 准备数据集
from torch import nn
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(train_data_size))

# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络
class MyModule(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

# 创建网络模型
myModule = MyModule()
myModule = myModule.to(device)

# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)

# 优化器
learnng_rate = 1e-2 # 1 x 10 ^ (-2) = 0.01
optim = torch.optim.SGD(myModule.parameters(), lr = learnng_rate)

# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 2

# 添加tensorboard
writer = SummaryWriter("logs")
start_time = time.time()
for i in range(epoch):
    print("__________第{}轮训练开始__________".format(i+1))
    # 训练步骤开始
    myModule.train()
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = myModule(imgs)
        loss = loss_fn(outputs, targets)
        # 优化器优化模型
        # 清零上一梯度
        optim.zero_grad()
        # 反向传播,获取梯度
        loss.backward()
        # 优化器根据梯度优化参数
        optim.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print(end_time - start_time)
            print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 添加item(),将tensor类型转化为纯数字
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 每轮训练完后,需要让网络在测试数据集上跑一遍,以测试数据集上的准确率来评估网络模型
    # 测试步骤开始,不需要进行调优
    myModule.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = myModule(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss += loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy += accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
    writer.add_scalar("total_test_accuracy", total_accuracy / test_data_size, total_test_step)
    total_test_step += 1

    # 保存每一轮训练的结果
    torch.save(myModule, "myModule_{}.pth".format(i+1))
    print("第{}轮训练后的模型已保存".format(i+1))

writer.close()

完整的模型验证(测试,demo)套路

  • 即利用已经训练好的模型,然后给它提供输入
  • 代码如下
import torch
import torchvision
from PIL import Image
from torch import nn

image_path = "image/img.png"
image = Image.open(image_path)
print(image) # PIL image
# png格式是四通道,除了RGB三通道外,还有一个透明度通道,所以我们需要调用convert('RGB')保留其颜色通道
# 如果图片本来就是三个颜色通道,经过此操作,不变。
# 加上这一步后,可以适应png jpg各种格式的图片。
image = image.convert('RGB')
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape) # torch.Size([3, 32, 32])

class MyModule(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )
    def forward(self, x):
        x = self.model(x)
        return x
# 获取在Google Colab上训练好的CIFAR10网络模型myModule_gpu_30.pth文件
# GPU上的模型在CPU上运行,需要注释设备,device
model = torch.load("myModule_gpu_30.pth", map_location=torch.device('cpu'))
# print(model)

image = torch.reshape(image, (1, 3, 32, 32))
model.eval()
with torch.no_grad():
    output = model(image)
print(output)
# tensor([[ 0.0420, -1.9627,  3.6137,  2.4646,  2.2315,  4.4008, -0.0148, -3.1938,
#         -1.0747, -7.2118]], grad_fn=<AddmmBackward0>)
print(output.argmax(1)) # tensor([5]) 核对CIFAR10数据集的标签 ,是dog,测试准确
  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值