导数与微分、梯度

1、高阶、低阶、同阶、k阶、等价无穷小的概念

例,低阶无穷小的概念: lim ⁡ β α = 0 \lim\frac{\beta}{\alpha}=0 limαβ=0,记为 β = ο ( α ) \beta=\omicron(\alpha) β=ο(α)

2、极限->导数->微分

2.1导数的定义

f ′ ( x ) = lim ⁡ n → ∞ f ( x + Δ x ) − f ( x ) Δ x f'(x)=\lim_{n \to \infty}\frac{f(x+\Delta x) - f(x)}{\Delta x} f(x)=nlimΔxf(x+Δx)f(x)

Δ y Δ x = f ′ ( x ) + α \frac{\Delta y}{\Delta x}=f'(x)+\alpha ΔxΔy=f(x)+α

Δ y = f ′ ( x ) Δ x + α Δ x \Delta y=f'(x)\Delta x +\alpha\Delta x Δy=f(x)Δx+αΔx

α Δ x = ο ( x ) \alpha\Delta x=\omicron(x) αΔx=ο(x)

2.2古典微分模型 d y = Δ y \mathrm{d}y=\Delta y dy=Δy

2.3极限微分学 d y ≈ Δ y \mathrm{d}y \approx \Delta y dyΔy

这里的 ≈ \approx 说明了微分是变化的逼近,而不是变化本身

d y = f ′ ( x ) Δ x \mathrm{d}y=f'(x)\Delta x dy=f(x)Δx

2.4求导与微分,两者的结合需要极限的思想

3、梯度

3.1要了解偏导数的定义

3.2方向导数的定义

∂ f ∂ l ∣ ( x 0 , y 0 ) = lim ⁡ t → 0 + f ( x 0 + t c o s α , y 0 + t c o s β ) − f ( x 0 , y 0 ) t \frac{\partial f}{\partial l}|_{(x_0,y_0)}=\lim_{t \to 0^+}\frac{f(x_0+tcos\alpha,y_0+tcos\beta) - f(x_0,y_0)}{t} lf(x0,y0)=t0+limtf(x0+tcosα,y0+tcosβ)f(x0,y0)

3.3梯度的定义

梯度是一个矢量,其方向上的方向导数最大。具有一阶连续偏导数,意味着可微。可微意味着函数[公式] 在各个方向的切线都在同一个平面上,也就是切平面

感谢:

https://www.zhihu.com/question/264955988/answer/287361075

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页