导数,梯度,偏导数,方向梯度

三年没看高数了,关于导数的一些概念有点记不清了,今天又重新复习。

导数

导数(英语:Derivative)是微积分学中重要的基础概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近[1]。

定义:设有定义域和取值都在实数域中的函数 y = f ( x ) y=f(x) y=f(x)。若 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某个邻域内有定义,则当自变量 x x x x 0 x_0 x0 处取得增量 Δ x \Delta x Δx(点 x 0 + Δ x x_0+\Delta x x0+Δx 仍在该邻域内)时,相应地 y y y 取得增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0);如果 Δ y \Delta y Δy Δ x \Delta x Δx 之比当 Δ x → 0 \Delta x\to 0 Δx0 时的极限存在,则称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 处的导数,记为 f ′ ( x 0 ) f'(x_0) f(x0)

f ′ ( x 0 ) = lim ⁡ x 0 → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0) = \lim_{x_0 \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} f(x0)=x00limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)

在这里插入图片描述

注意:导数虽然有正有负,但导数是一个标量!

向量值函数

当函数 y y y 的取值不再是实数,而是一般的 R n \mathbf{R}^n Rn中的向量时,仍然可能对其求导。这时的函数值是: y = ( y 1 (

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值