问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。
输入格式
输入包含两个正整数,K和L。
输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;
对于50%的数据,K <= 16, L <= 10;
对于100%的数据,1 <= K,L <= 100。
======================
思路:
dp[i进制][j串长] =dp[i进制][j-1串长]基础上在末尾插入一位数字的合法情况->由串长为1的状态推广(递推)到串长为L
public class K好数 {
static int[][] dp;
static int MOD =1000000007;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int val =sc.nextInt(); //进制数
int len =sc.nextInt(); //串长
sc.close();
dp =new int[val +1][len +1];
//初始化
for(int i =1 ;i <=val ;i ++) dp[i][1] =1;
//推广串长到2-len
for(int i =2 ;i <=len ;i ++) {
//原串最后一位
for(int j =0 ;j <val ;j ++) { //j k值小于进制数
//基于推广串长所加在末尾的那一位
for(int k =0 ;k <val ;k ++) {
if(j ==k -1 ||j ==k +1) continue;
dp[j][i] +=dp[j][i -1];
dp[j][i] %=MOD;
}
}
}
int sum =0;
for(int i =1 ;i <val ;i ++) {sum +=dp[i][len]; sum %=MOD;}
System.out.println(sum);
}
}