蓝桥杯 不知道是哪一届 K好数(dp)

问题描述

如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。
输入格式

输入包含两个正整数,K和L。
输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定

对于30%的数据,KL <= 106;

对于50%的数据,K <= 16, L <= 10;

对于100%的数据,1 <= K,L <= 100。

======================

思路:
dp[i进制][j串长] =dp[i进制][j-1串长]基础上在末尾插入一位数字的合法情况->由串长为1的状态推广(递推)到串长为L

public class K好数 {
	static int[][] dp;
	static int MOD =1000000007;
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int val =sc.nextInt();		//进制数
		int len =sc.nextInt();		//串长
		sc.close();

		dp =new int[val +1][len +1];
		//初始化
		for(int i =1 ;i <=val ;i ++) dp[i][1] =1;
		//推广串长到2-len
		for(int i =2 ;i <=len ;i ++) {
			//原串最后一位
			for(int j =0 ;j <val ;j ++) {	//j k值小于进制数
				//基于推广串长所加在末尾的那一位
				for(int k =0 ;k <val ;k ++) {
					if(j ==k -1 ||j ==k +1) continue;
					dp[j][i] +=dp[j][i -1];
					dp[j][i] %=MOD;
				}
			}
		}
		int sum =0;
		for(int i =1 ;i <val ;i ++) {sum +=dp[i][len]; sum %=MOD;}
		System.out.println(sum);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肯尼思布赖恩埃德蒙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值