好用的学术搜索网站

如何准确高效的获得自己相关研究领域的科技论文,是衡量一个科研人员素质的基本度量。
1.谷歌学术 VS bing学术
http://www.360doc.com/content/15/1103/21/8291254_510532536.shtml
2.最好用的当属谷歌学术,可惜目前还不能愉快的登陆,需要使用代理、插件或更改host等方法,网上有许多方法可参考。
网址:https://scholar.google.com/
3.常见的百度学术,对中文文献搜索能力尚可,但英文文献搜索较鸡肋。
网址:http://xueshu.baidu.com/
4.bing搜索,页面很花哨,搜索能力在谷歌学术和百度学术之间,个人认为在无法访问谷歌学术的情况下,bing学术是最好的选择。
网址:http://cn.bing.com/academic/
5.web of science 学术搜索,主要收录SCI期刊论文。但wos不是完全开放的学术搜索网站,只在一些大学和科研机构内ip范围才可以使用。
网址: http://isiknowledge.com
6.还有一些收费网站,如CNKI知网,维普期刊等,搜索中文期刊比较好用。
网址:www.cnki.net/www.cqvip.com/
7.microsoft学术搜索 - Microsoft Academic
https://academic.microsoft.com

### 适用于知识点搜索的最佳AI模型或软件推荐 对于知识点搜索的需求,当前存在多种先进的AI模型和工具能够提供高效的支持。以下是几种适用的解决方案: #### 1. **基于Transformer架构的知识检索模型** 近年来,基于Transformer架构的预训练语言模型在自然语言处理领域取得了显著进展。这些模型具备强大的语义理解能力,非常适合用于复杂知识点的查询与匹配。例如BERT[^1]及其变体(如RoBERTa、DistilBERT),它们能够在大规模文本数据集中快速定位相关内容。 ```python from transformers import BertTokenizer, BertForQuestionAnswering tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForQuestionAnswering.from_pretrained('bert-base-uncased') def answer_question(question, context): inputs = tokenizer.encode_plus(question, context, return_tensors='pt', max_length=512, truncation=True) start_scores, end_scores = model(**inputs) all_tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) answer = ' '.join(all_tokens[torch.argmax(start_scores): torch.argmax(end_scores)+1]) return answer.strip() ``` 上述代码展示了如何利用Hugging Face库中的`BertForQuestionAnswering`实现问答功能,这对于特定知识点的提取非常有效。 --- #### 2. **向量搜索引擎结合嵌入式表示** 为了进一步提升搜索效率,可以采用向量搜索引擎(如Faiss[^3] 或 Milvus)。这类引擎支持高维空间内的相似度计算,配合词嵌入技术(如Sentence-BERT 或者OpenAI的Embedding API[^4]),可实现实时高效的语义级检索。 具体流程如下: - 将文档转化为固定长度的密集向量; - 使用索引结构加速最近邻查找过程; - 返回最接近目标问题的一组候选答案。 这种方案特别适合于构建企业内部知识管理系统或者学术资源门户。 --- #### 3. **开源框架Duckling/AskMe** 除了单独部署机器学习组件外,还有一些现成的应用程序可供尝试。比如Facebook开发的小型解析器——Duckling[^2] ,它可以识别日期时间表达式并转换为标准格式;还有Google推出的对话代理平台Dialogflow,则更侧重于意图分类以及槽位填充任务。不过针对纯文本式的百科全书样式条目查寻而言,“Ask Me Anything”类项目可能更加贴合实际需求场景。 综上所述,在挑选合适的产品之前应当充分考虑业务特性以及预期效果等因素后再做决定。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值