腾讯 - TEG(NLP算法实习生) 一面面经

本文详述了一位应聘者在腾讯TEG自然语言处理算法实习岗位的一面经历,包括自我介绍、论文与项目讨论、大模型方向的理解以及多道编程题目解答,如编辑距离优化解法、最长连续子串、最大1边界正方形和最长重复子串等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

😄 整个流程按如下问题展开,用时40min左右面试官人挺好,前半部分问问题(没问一些ML/DL理论问题,问的都是科研项目和简历上的项目),后半部分coding一道题。

各位有什么问题可以直接评论区留言,24小时内必回信息,放心~


1、自我介绍

2、介绍论文和项目,也对此提问了一些问题。

3、有无了解大模型方向

4、一面coding题(编辑距离-一次编辑版本):

😄 以我对之前的面经来总结的话,腾讯的coding喜欢考一些字符串相关的题目。
在这里插入图片描述

这是我TEG一面的coding题,编辑距离是算两个字符串,变成同一个字符串的最小操作数(删除、替换、插入),而这次面试出的题是说,要是操作数≤1那就返回True,否则返回False。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值