【机器学习实战】python中使用Matplotlib绘制树形图

上一篇:决策树——构造决策树

Matplotlib注解

Matplotlib提供了一个非常有用的注解工具annotations,它可以在数据图形上添加文本注解。注解通常用于解释数据的内容。由于数据上面直接存在文本描述非常丑陋,因此工具内嵌支持带箭头的划线工具,使得我们可以在其他恰当的地方指向数据位置,并在此处添加描述信息,解释数据内容。如图3-4所示,在坐标(0.2, 0.1)的位置有一个点,我们将对该点的描述信息放在(0.35, 0.3)的位置,并用箭头指向数据点(0.2, 0.1)。
在这里插入图片描述

使用文本注解绘制树节点

创建treePlotter.py

import matplotlib.pyplot as plt

# 定义文本框和箭头格式
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")


## 绘制带箭头的注解###########################
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                            xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)

def createPlot():
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    createPlot.ax1 = plt.subplot(111, frameon=False)
    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
    plt.show()

这是第一个版本的createPlot()函数,与例子文件中的createPlot()函数有些不同,随着内容的深入,我们将逐步添加缺失的代码。代码定义了描述树节点格式的常量1。然后定义plotNode()函数执行了实际的绘图功能,该函数需要一个绘图区,该区域由全局变量createPlot.ax1定义。Python语言中所有的变量默认都是全局有效的,只要我们清楚知道当前代码的主要功能,并不会引入太大的麻烦。最后定义createPlot()函数,它是这段代码的核心。createPlot()函数首先创建了一个新图形并清空绘图区,然后在绘图区上绘制两个代表不同类型的树节点,后面我们将用这两个节点绘制树形图。

测试

createPlot()

在这里插入图片描述

构造注解树

绘制一棵完整的树需要一些技巧。我们虽然有x、y坐标,但是如何放置所有的树节点却是个问题。我们必须知道有多少个叶节点,以便可以正确确定x轴的长度;我们还需要知道树有多少层,以便可以正确确定y轴的高度。这里我们定义两个新函数getNumLeafs()和getTreeDepth(),来获取叶节点的数目和树的层数

获取叶节点的数目和树的层数

## 获取叶节点的数目和树的层数#######################
def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs


def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth
    return maxDepth

上述程序中的两个函数具有相同的结构,后面我们也将使用到这两个函数。这里使用的数据结构说明了如何在Python字典类型中存储树信息。第一个关键字是第一次划分数据集的类别标签,附带的数值表示子节点的取值。从第一个关键字出发,我们可以遍历整棵树的所有子节点。使用Python提供的type()函数可以判断子节点是否为字典类型1。如果子节点是字典类型,则该节点也是一个判断节点,需要递归调用getNumLeafs()函数。getNumLeafs()函数遍历整棵树,累计叶子节点的个数,并返回该数值。第2个函数getTreeDepth()计算遍历过程中遇到判断节点的个数。该函数的终止条件是叶子节点,一旦到达叶子节点,则从递归调用中返回,并将计算树深度的变量加一。为了节省大家的时间,函数retrieveTree输出预先存储的树信息,避免了每次测试代码时都要从数据中创建树的麻烦。

测试

## 测试2
def retrieveTree(i):
    listOfTree = [{'no surfacing': {0: '0', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                  {'no surfacing': {0: '0', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                  ]
    return listOfTree[i]


print(retrieveTree(1))
myTree = retrieveTree(0)
print(getNumLeafs(myTree))
print(getTreeDepth(myTree))
===========================================
{'no surfacing': {0: '0', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
3
2

函数retrieveTree()主要用于测试,返回预定义的树结构。上述命令中调用getNumLeafs()函数返回值为3,等于树0的叶子节点数;调用getTreeDepths()函数也能够正确返回树的层数。

plotTree

## PLOTTREE#################################
## 在父子节点间填充文本信息
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
    yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString)


def plotTree(myTree, parentPt, nodeTxt):
    # 计算宽与高
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)
    # 标记子节点属性
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    # 减少y偏移
    plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]) == dict:
            plotTree(secondDict[key], cntrPt, str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD


#### 版本2
def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False)  # no ticks
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5 / plotTree.totalW
    plotTree.yOff = 1.0
    plotTree(inTree, (0.5, 1.0), '')
    plt.show()

函数createPlot()是我们使用的主函数,它调用了plotTree(),函数plotTree又依次调用了前面介绍的函数和plotMidText()。绘制树形图的很多工作都是在函数plotTree()中完成的,函数plotTree()首先计算树的宽和高2。全局变量plotTree.totalW存储树的宽度,全局变量plotTree.totalD存储树的深度,我们使用这两个变量计算树节点的摆放位置,这样可以将树绘制在水平方向和垂直方向的中心位置。与程序清单3-6中的函数getNumLeafs()和getTreeDepth()类似,函数plotTree()也是个递归函数。树的宽度用于计算放置判断节点的位置,主要的计算原则是将它放在所有叶子节点的中间,而不仅仅是它子节点的中间。同时我们使用两个全局变量plotTree.xOff和plotTree.yOff追踪已经绘制的节点位置,以及放置下一个节点的恰当位置。另一个需要说明的问题是,绘制图形的x轴有效范围是0.0到1.0, y轴有效范围也是0.0~1.0。为了方便起见,图3-6给出具体坐标值,实际输出的图形中并没有x、y坐标。通过计算树包含的所有叶子节点数,划分图形的宽度,从而计算得到当前节点的中心位置,也就是说,我们按照叶子节点的数目将x轴划分为若干部分。按照图形比例绘制树形图的最大好处是无需关心实际输出图形的大小,一旦图形大小发生了变化,函数会自动按照图形大小重新绘制。如果以像素为单位绘制图形,则缩放图形就不是一件简单的工作。
接着,绘出子节点具有的特征值3,或者沿此分支向下的数据实例必须具有的特征值3。使用函数plotMidText()计算父节点和子节点的中间位置,并在此处添加简单的文本标签信息1。
然后,按比例减少全局变量plotTree.yOff,并标注此处将要绘制子节点4,这些节点既可以是叶子节点也可以是判断节点,此处需要只保存绘制图形的轨迹。因为我们是自顶向下绘制图形,因此需要依次递减y坐标值,而不是递增y坐标值。然后程序采用函数getNumLeafs()和getTreeDepth()以相同的方式递归遍历整棵树,如果节点是叶子节点则在图形上画出叶子节点,如果不是叶子节点则递归调用plotTree()函数。在绘制了所有子节点之后,增加全局变量Y的偏移。

测试

## 测试3:
myTree = retrieveTree(0)
createPlot(myTree)

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhShy23

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值