openfoam学习心得—欧拉角(同时midas中单元坐标系中的beta可以参考此贴中的动图理解)

本文分享了在openfoam中学习欧拉角的心得体会,探讨了刚体坐标系和全局坐标系之间的转换,强调了旋转矩阵在坐标系对齐中的作用。同时提到,力和角速度在不同坐标系下的转化问题,以及欧拉角与四元素之间的关系。
摘要由CSDN通过智能技术生成

openfoam学习心得—欧拉角
刚体绕着质心转动,有刚体坐标系和全局坐标系,旋转矩阵又称为方向矩阵,欧拉角其实就是旋转矩阵怎么转可以与全局坐标系重合,注意,这两个坐标系的原点都是相同的,两个坐标系中两套坐标系统之间的转换关系就是通过旋转矩阵来定义。那么存在一个问题,如何根据 物体此时收到的力来算三个旋转角度。

其实这中间经历了4个坐标系,没转动一次就是一个坐标系,乘以矩阵就将位移,力矩转换到该坐标系下,力是影响质心平移的原因,所以不用转化,角速度也分为欧拉角速度,以及绕着三个轴的普通角速度w,可以相互转化
欧拉角与四元素1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值