写在前面
搜索是电商平台的重要流量入口之一,很多用户进入平台后会直接使用搜索功能来查找商品。通过优化搜索算法和结果展示,能够提高用户找到心仪商品的效率,进而提高用户的点击/购买转化率,为平台带来更多的交易和收入。搜索是搜广推算法的子集,相比于广告和推荐,搜索需要在用户个性化的同时保证用户使用体验和用户生命周期(LT),同时电商搜索又是搜索的子集,需要保证相关性的基础上,优化点击率(CTR)、转化率(CVR)和交易额(GMV)等商业指标,从而增加平台的商业收益。以下学习指南主要包含三部分,电商搜索Overview、搜广推算法和算法工程师基础。
电商搜索Overview
基础知识
- 电商搜索概念与流程:了解电商搜索的基本概念,如用户输入查询词后,平台如何进行意图识别、召回相关商品以及排序展示给用户。学习链接:购物网站的搜索功能是怎么实现的?。
- 电商平台特点:熟悉不同电商平台的搜索特点,如淘宝、京东、拼多多等传统货架电商平台,以及抖音、小红书等内容电商平台在搜索逻辑、核心指标、排序因素等方面的差异。
- 京东搜索:京东电商搜索中的语义检索与商品排序, 京东DPSR
- 淘宝搜索:KDD'21 | 淘宝搜索中语义向量检索技术
- 美团:美团技术团队
业务链路
- 业务链路:电商搜索的业务链路及主要环节功能,学习链接:电商搜索系统业务链路解读 。
- 指标分析:电商搜索相关的指标,如点击率(CTR)、转化率(CVR)、交易额(GMV)等,通过数据评估搜索业务的效果和用户行为。
- 用户画像:了解如何通过数据分析构建用户画像,为个性化搜索和推荐提供支持,满足不同用户的需求。学习链接:电商搜索系统中搜索、推荐、广告的全方位解读。
搜广推算法
入门(必看)
- 王喆《深度学习推荐系统》
- 项亮《推荐系统实战》
进阶(实操)
前沿(及时了解&关注)
- 公众号:机器学习与推荐算法
- 公众号:蘑菇先生学习记
- 公众号:秋枫学习笔记
算法工程师基础
--参考:推荐算法&广告算法学习路线
机器学习
- 【基础】《统计学习方法》:非常经典的书,简单易懂,非常适合一开始入门的同学。
- 【基础】《机器学习》(西瓜书):也是非常经典的书籍,把机器学习领域的基础知识基本都过了一遍。
- 【基础】《机器学习实战》:在理解了经典理论的基础上,实现经典的算法。可以参考这本书,也可以自己在github上找已有的数据集,把经典的机器学习算法都实现一遍。
- [中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibili
- 【深入】pattern recognition and machine learning(PRML):纯粹的贝叶斯思想解释一切,推导硬核,看完会升华一级。
- 【深入】the elements of statistical learning(esl):是频率学派的经典著作,三位作者都是斯坦福统计系的大牛。
- 【深入】machine learing: A Probabilistic Perspective
深度学习
- bengio《deep learning》
- (强推)李宏毅2021春机器学习课程_哔哩哔哩_bilibili
- 神经网络与深度学习-复旦大学邱锡鹏
- 2020 cs231n 斯坦福大学计算机视觉 最新版
- 深度学习的经典的论文可以涉猎一些,比如batch_norm、各类学习器等经典论文,以及cnn、lstm等经典模型的论文
工程能力
- C++:指针、引用、数组、内存、虚函数、继承、多态、STL经典容器的模板实现、智能指针等基础知识。推荐《C++ Primer》
- python:https://www.python.org/doc/
- SQL:《MySQL必知必会》和日本工程师MICK写的《SQL基础教程》
- Linux shell:《Linux命令行与shell脚本编程大全》&《Linux Shell脚本攻略》