Visio画正态分布曲线

这篇博客介绍了如何在Visio中创建并调整曲线连接线。步骤包括打开新的Visio文档,启用网格线,使用连接线连接特定点,并将直线转换为曲线连接线。通过拖动控制点来调整曲线形状,使其符合网格的交点。这个教程适合需要在Visio中进行图形设计和流程图制作的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

工具

Visio

步骤

  1. 打开空白的Visio
  2. 调出网格线(grid)
  1. 用“连接线”连接3x4网格的A,B点(大网格,也可以按自己的想法选)
  1. 将连接线转换成“曲线连接线”
  1. 将下方第一个蓝点拉到水平位置,同时将第二个蓝点拉到网格交点处
  1. 重复上面的操作,获得右半部分

关于曲线的弯曲形状,大家可以根据需要自行调整。

### 如何在 Visio 中创建高斯分布图表 Visio 主要用于绘制流程图、网络图和其他类型的示意图形,而不是专门设计用来处理统计数据可视化工具。然而,可以通过一些间接方法,在 Visio 中实现近似于高斯分布的效果。 #### 方法一:利用 Excel 和 Visio 结合的方式 由于 Visio 并不直接支持复杂的数学函数绘图功能,因此可以先借助 Microsoft Excel 来生成高斯曲线的数据点并制作初步图表[^1]: 1. 在 Excel 中输入一组代表正态分布的概率密度值。 2. 使用 Excel 的内置图表工具绘制出平滑的折线图表示该概率密度函数。 3. 将此图表复制粘贴到 Visio 文档内作为一个图片对象或者通过 OLE 嵌入方式链接至原始文件以便后续更新维护。 这种方法虽然不是纯 Visio 解决方案,但在实际应用中非常实用有效,并且能够充分利用 Office 软件套件之间的协作优势。 #### 方法二:手动绘制近似的高斯曲面形状 如果不希望依赖外部程序,则可以在 Visio 内部尝试构建一个视觉上接近的标准钟形曲线: - 利用基本几何图形组合而成;例如椭圆加上调整后的弧度线条模拟两侧渐变趋势; - 或者采用更精确的手法——即插入一条多段贝塞尔曲线(Bezier Curve),并通过控制手柄精细调节各部分弯曲程度直至满意为止。 需要注意的是这种方式仅能提供外观上的相似性而无法保证数值准确性,对于展示概念性的内容尚可接受但对于严谨的研究报告则不太合适[^2]。 ```python import numpy as np from scipy.stats import norm import matplotlib.pyplot as plt # Generate Gaussian distribution data points using Python and Matplotlib for reference mu, sigma = 0, 0.1 # mean and standard deviation s = np.random.normal(mu, sigma, 1000) count, bins, ignored = plt.hist(s, 30, density=True) plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(- (bins - mu)**2 / (2 * sigma**2)), linewidth=2, color='r') plt.show() ``` 上述代码片段展示了如何使用 Python 和 Matplotlib 库生成标准正态分布图像作为参考模板,但这并不是针对 Visio 的操作指南而是为了帮助理解目标形态特征[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

假装忙碌的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值