否定、合取、析取、条件、双条件定义及LaTex公式

1 否定

定义:设P为一命题,P的否定是一个新的命题,记作 ¬ \neg ¬P。若P为T, ¬ \neg ¬P为F;若P为F, ¬ \neg ¬P为T。

P ¬ \neg ¬P
TF
FT

LaTex公式:$\neg$

2 合取

定义:两个命题P和Q的合取是一个复合命题,记作P ∧ \wedge Q,当且仅当P、Q同时为T时,P ∧ \wedge Q为T,在其他情况下,P ∧ \wedge Q的真值都是F

PQP ∧ \wedge Q
TTT
TFF
FTF
FFF

LaTex公式:$\wedge$

3 析取

定义:两个命题P和Q的析取是一个复合命题,记作P ∨ \vee Q。当且仅当P、Q同时为F时,P ∨ \vee Q的真值为F,否则P ∨ \vee Q的真值为T

PQP ∨ \vee Q
TTT
TFT
FTT
FFF

LaTex公式:$\vee$

4 条件

定义:给定两个命题P和Q,其条件命题是一个复合命题,记作P → \rightarrow Q,读作“如果P,那么Q”或者“若P则Q”。当且仅当P的真值为T,Q的真值为F时,P → \rightarrow Q的真值为F,否则P → \rightarrow Q的真值为T。我们称P为前件,Q为后件。

PQP → \rightarrow Q
TTT
TFF
FTT
FFT

LaTex公式:$\rightarrow$

5 双条件

定义:给定两个命题P和Q,其复合命题P ↔ \leftrightarrow Q称作双条件命题,读作“P当且仅当Q”,当P和Q的真值相同时,P ↔ \leftrightarrow Q的真值为T,否则P ↔ \leftrightarrow Q的真值为F。

PQP ↔ \leftrightarrow Q
TTT
TFF
FTF
FFT

LaTex公式:$\leftrightarrow$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值