1 否定
定义:设P为一命题,P的否定是一个新的命题,记作¬\neg¬P。若P为T,¬\neg¬P为F;若P为F,¬\neg¬P为T。
| P | ¬\neg¬P |
|---|---|
| T | F |
| F | T |
LaTex公式:$\neg$
2 合取
定义:两个命题P和Q的合取是一个复合命题,记作P∧\wedge∧Q,当且仅当P、Q同时为T时,P∧\wedge∧Q为T,在其他情况下,P∧\wedge∧Q的真值都是F
| P | Q | P∧\wedge∧Q |
|---|---|---|
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | F |
LaTex公式:$\wedge$
3 析取
定义:两个命题P和Q的析取是一个复合命题,记作P∨\vee∨Q。当且仅当P、Q同时为F时,P∨\vee∨Q的真值为F,否则P∨\vee∨Q的真值为T
| P | Q | P∨\vee∨Q |
|---|---|---|
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |
LaTex公式:$\vee$
4 条件
定义:给定两个命题P和Q,其条件命题是一个复合命题,记作P→\rightarrow→Q,读作“如果P,那么Q”或者“若P则Q”。当且仅当P的真值为T,Q的真值为F时,P→\rightarrow→Q的真值为F,否则P→\rightarrow→Q的真值为T。我们称P为前件,Q为后件。
| P | Q | P→\rightarrow→Q |
|---|---|---|
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |
LaTex公式:$\rightarrow$
5 双条件
定义:给定两个命题P和Q,其复合命题P↔\leftrightarrow↔Q称作双条件命题,读作“P当且仅当Q”,当P和Q的真值相同时,P↔\leftrightarrow↔Q的真值为T,否则P↔\leftrightarrow↔Q的真值为F。
| P | Q | P↔\leftrightarrow↔Q |
|---|---|---|
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | T |
LaTex公式:$\leftrightarrow$
本文详细介绍了五种基本逻辑运算符:否定、合取、析取、条件及双条件,并通过真值表清晰展示了每种运算符的工作原理。
5898

被折叠的 条评论
为什么被折叠?



