1.画板问题
沫璃有一个画板,画板可以抽象成有100行每行100个像素点的正方形。沫璃在画板上画画,她一共画了n次,每次将一个矩形涂上颜色。沫璃想知道一共有多少个像素点被她涂过颜色。若一个像素点被涂了k次,那么认为有k个像素点被涂过颜色。
输入描述:
第一行一个数T(T<=100),表示数据组数。
对于每组数据,第一行一个整数n , (1<=n<=100)
接下来n行,每行4个整数x1, y1,
x2, y2 (1 <= x1 <= x2 <= 100, 1 <= y1 <= y2 <= 100),表示矩形的两个对角所对应的像素点的坐标。
输出描述:
对于每组数据,输出一行,表示沫璃一共涂了多少个像素点。
输入例子1:
2
2
1 1 2 3
2 2 3 3
2
1 1 3 3
1 1 3 3
输出例子1:
10
18
#完全通过
T = int(input())
i = 0
num,summ = [], []
while i<T:
num.append(int(input()))
j=0
tamp1=0
while j<num[i]:
tamp=list(map(int, input().split(" ")))
tamp1 +=(tamp[2]-tamp[0]+1)*(tamp[3]-tamp[1]+1)
del tamp
j += 1
summ.append(tamp1)
i += 1
for ii in summ:
print(ii)
2.交易
沫璃发起了一场交易,她将她的5个朋友聚在一起准备进行一场交易。交易开始前,大家各有b(b>0)个硬币,交易后,每个人有ai个硬币。由于硬币不方面携带,在交易过程中可能会丢失。现在沫璃想知道是否一定丢失硬币,或者在可能没有丢失硬币的情况下,交易前每个人的硬币数b。沫璃只是组织者,不参与交易。
输入描述:
第一行一个数T(T<=100),表示数据组数。
对于每组数据,第一行5个整数,第i个整数ai表示交易后第i个朋友的硬币数(0<=ai<=100)
输出描述:
对于每组数据,输出一行,若一定丢失硬币输出-1,若可能没有丢失硬币,输出b。
输入例子1:
2
2 5 4 0 4
4 5 9 2 1
输出例子1:
3
-1
#完全通过
T = int(input())
i=0
result = []
while i<T:
tamp=list(map(int, input().split(" ")))
if ((sum(tamp))%5 ==0) & (sum(tamp)>0):
result.append(sum(tamp)//5)
else:
result.append(-1)
del tamp
i += 1
for i in result:
print(i)
3.派对
沫璃邀请她的朋友参加周末的派对。沫璃买了3种颜色的气球,现在她要有这些气球来装饰餐桌,每个餐桌只用恰好3个气球装饰,要求3个气球的颜色不能完全一样,可以是2种或者3种颜色。沫璃想知道这些气球最多能装饰多少张餐桌。
输入描述:
第一行一个数T(T<=100),表示数据组数。
对于每组数据,第一行3个整数r,g,b,分别表示三种颜色的气球个数(0<=r, g, b<=2*10^9)
输出描述:
对于每组数据,输出一行,一个整数表示最多能装饰的餐桌数量。
输入例子1:
2
5 4 3
2 3 3
输出例子1:
4
2
#思路:思维题,首先,要明确一点,只能使用1 2和1 1 1这两种组合,
而且能使用1 1 1的一般都可以使用1 2来替代,而且1 2这种组合还比1 1 1还少用一种颜色,
因此,先把三种颜色按数量排序,颜色数量最多的那个用2个,其余的用一个,
这样试一下看看行不行,如果行就最好,不行的话,用1 1 1这种组合和2 1这种组合来中和,
这样去凑。
#完全通过
T = int(input())
i =0
result = []
while i<T:
tamp=list(map(int, input().split(" ")))
R=min(tamp)
B=max(tamp)
G=sum(tamp)-R-B
if ((R+G)*2) <=B:
result.append(R+G)
else:
result.append((R+G+B)//3)
del tamp
i+= 1
for ii in result:
print(ii)
PS 其实一开始是没想到解决办法的,就硬写了一个,结果还通过了50%,也贴一下:
#通过 50%的
T = int(input())
i =0
result = []
while i<T:
tamp=list(map(int, input().split(" ")))
if tamp.count(0)>=2:
result.append(0)
else:
result.append(sum(tamp)//3)
del tamp
i+= 1
for ii in result:
print(ii)
4.赛马
茉莉有2n匹马,每匹马都有一个速度v,现在茉莉将马分为两个队伍,每个队伍各有n匹马,两个队之间进行n场比赛,每场比赛两队各派出一匹马参赛,每匹马都恰好出场一次。茉莉想知道是否存在一种分配队伍的方法使得无论怎么安排比赛,第一个队伍都一定能获的全胜,两匹马若速度一样,那么速度快的获胜,若速度一样,则都有可能获胜。
输入描述:
第一行一个数T(T<=100),表示数据组数。
对于每组数据,第一行一个整数n , (1<=n<=100)
接下来一行,2*n个整数,第i个整数vi表示第i匹马的速度, (1
<= vi <= 1000)
输出描述:
对于每组数据,输出一行,若存在一种分配方法使得第一个队伍全胜输出YES,否则输出NO
输入例子1:
2
2
1 2 3 4
1
1 1
输出例子1:
YES
NO
#全部通过
#注意这道题一个关键点是:无论怎么安排比赛都要获胜才算YES,所以思路是将马匹按从小到大顺序
#排序以后,第二队的第一匹马都要大于第一队马的速度才算YES.
T = int(input())
i =0
flag=-1
result = []
while i<T:
nums = int(input())
tamp=list(map(int, input().split(" ")))
tamp.sort()
tamp1=tamp[0:nums]
tamp2=tamp[nums:]
for ii in range(nums):
if tamp2[0] > tamp1[ii]:
flag=1
else:
flag=0
break
if flag == 1:
result.append("YES")
else:
result.append("NO")
del tamp, nums,tamp1,tamp2
i+= 1
for j in result:
print(j)
5.玫瑰花
有K种不同的玫瑰花,现在要摆放在N个位置上,要求每种颜色的花至少出现过一次,请问有多少种不同的方案数呢?,因为答案可能很大,你只需要输出它对772235取余后的结果.
输入描述:
输入只有1行,分别有两个整数N,K( 1 <= N <= 50000 , 1 <= K <= 30 )
输出描述:
输出一行表示答案
输入例子1:
3 2
输出例子1:
6
#这个题思路是动态规划,用排列组合做只能过20%,先贴上排列方法:
#通过20%的。。
T = list(map(int, (input().split())))
N=T[0]
K=T[1]
result=1
for i in range(K):
result *= (N-i)
print(result % 772235)
#参考其他同学思路:动态规划。定义dp[i][j]为前i个位置用了j种颜色的方案数,
那么状态转移方程为dp[i][j] = j * dp[i - 1][j] + (k - j + 1) * dp[i - 1][j - 1],
初始化dp[0][0] = 1。
#include <bits/stdc++.h>
using namespace std;
const int mod = 772235;
int main()
{
for (int n, k; cin >> n >> k; ) {
vector<vector<int> > dp(n + 1, vector<int>(k + 1, 0));
dp[0][0] = 1;
for (int i = 1; i < n + 1; i++)
for (int j = 1; j < k + 1; j++)
dp[i][j] = (j * dp[i - 1][j] % mod + (k - j + 1) * dp[i - 1][j - 1] % mod) % mod;
cout << dp[n][k] << endl;
}
return 0;
}
6.奇异长度
给你一个图,0节点连接这一个联通块a,1节点连接着一个联通块b,ab仅由01这条边相连。现在我们定义奇异路径为恰好经过0-1这条边一次的路径。在这个图中有无数条奇异路径,问第k长的奇异路径长度是多少?
输入描述:
输入若干行,第一行有三个正整数n,m,k,表示有n个节点,0~n-1,有m条边,问第k长,接下来有m行u,v,表示边,保证0-1边只出现一次,保证a,b联通块只通过0-1相连。
5<=n<=100,k<2^40
输出描述:
输出一行表示答案
输入例子1:
5 4 10
0 1
0 2
1 3
1 4
输出例子1:
4
在这里插入代码片