leetcode 703.数据流中的第K大元素

本文介绍如何使用优先队列实现LeetCode问题703的解决方案,设计一个类来找到数据流中排序后的第k大元素,通过小顶堆优化数据结构,降低查找复杂度。实现`KthLargest`类并演示了add方法的使用和示例。
摘要由CSDN通过智能技术生成

leetcode 703.数据流中的第K大元素

题干

设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。
请实现 KthLargest 类:
KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
int add(int val) 将 val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。

示例:
输入:
[“KthLargest”, “add”, “add”, “add”, “add”, “add”]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]

解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // return 4
kthLargest.add(5); // return 5
kthLargest.add(10); // return 5
kthLargest.add(9); // return 8
kthLargest.add(4); // return 8

提示:
1 <= k <= 104
0 <= nums.length <= 104
-104 <= nums[i] <= 104
-104 <= val <= 104
最多调用 add 方法 104 次
题目数据保证,在查找第 k 大元素时,数组中至少有 k 个元素

题解

仔细一想,题目求得是第k“大”的元素,那其实只要第一次找到第k大的元素后,比这个数小的数都可以考虑不计算,因为根本不影响答案。由此,也就不需要对整个数组进行排序了,可以换一种更高效的数据结构。
这里用了优先队列实现小顶堆,初始化时先将比第k大的数小的数全部抛掉,使得堆顶即为第k大元素。
在加入新的数时,只需与堆顶元素进行比较,如果小于堆顶元素则不影响答案,直接返回堆顶元素即可。如果大于堆顶元素,则需要更新答案,将元素加入优先队列,然后抛掉原先的堆顶元素。
特别需要注意的是,有可能在第一次调用add方法时优先队列中的元素还不足k个,此时不论元素大小直接加入即可,不需要抛出操作。

class KthLargest {
public:
    int kth;
    priority_queue<int,vector<int>,greater<int> > kthNum;
    KthLargest(int k, vector<int>& nums) {
        kth = k;
        for(auto i : nums){
            kthNum.push(i);
        }
        int popCount = nums.size() - k;
        for(int i = 0 ; i < popCount ; ++i){
            kthNum.pop();
        }
    }
    
    int add(int val) {
        if(kthNum.size() < kth){
            kthNum.push(val);
            return kthNum.top();
        }
        if(val > kthNum.top()){
            kthNum.push(val);
            kthNum.pop();
        }
        return kthNum.top();
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值