PAT.1064 Complete Binary Search Tree - 二叉树的中序遍历与层序遍历
题目链接
题干的意思是给你一个数组,根据数组建立一个完全的二叉搜索树,并打印其层序遍历。
首先趁这个机会复习一下BST和CST的概念:
- 通俗理解BST即是左子树中所有节点小于根节点,右子树中所有节点大于根节点的二叉树
- CST即是一棵满二叉树在最底层从左填充若干节点得到的二叉树。
根据题目给出的数列很容易想到预处理成升序,因为BST的中序遍历是升序的,得到中序遍历后我们要想办法将其向层序遍历转化。
这里又想到平时算法题经常会用数组来模拟树结构,即设某一根节点下标为i,用其下标i * 2表示其左孩子,i * 2 + 1表示其右孩子。
这个处理办法有一个好处,就是在数组中模拟的树结构的下标遍历恰好是层序遍历。因此我们只需要从根节点开始对树结构进行中序遍历,然后将中序遍历的值不断赋给遍历到的节点即可。
值得注意的是这个处理方法在极端情况下下标可能会开到2的n次方所以我倾向于单开l,r数组模拟树,但由于题干明确说明了BST是完全的,所以可以放心用。
题解
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,idx,inOrder[1005],tree[1005];
void build(int root){
if(root > n) return;
build(root * 2);
tree[root] = inOrder[idx++];
build(root * 2 + 1);
}
int main(){
cin>>n;
for(int i = 0 ; i < n ; ++i) cin>>inOrder[i];
sort(inOrder,inOrder + n);
build(1);
for(int i = 1 ; i <= n ; ++i){
cout<<tree[i];
if(i != n) cout<<' ';
}
}