rknn-toolkit2示例交叉编译部署教程

1、转到目标目录

切换目录到想要部署的模型文件夹下,本次示例为yolov5
在这里插入图片描述

2、下载编译工具链

apt install cmake

apt-get install gcc-aarch64-linux-gnu g++-aarch64-linux-gnu

3、使用示例脚本编译

在这里插入图片描述

4、复制编译安装的文件夹到linux板子

编译安装好的文件在 ./install 目录下,方式有很多,在同一个局域网络下,传输工具就可以;实在不行拿U盘拷贝也是可以的。
在这里插入图片描述

5、给执行权限

在linux板子上执行,之后的步骤也都是在RK3588的板子上操作。

chmod +x rknn_yolov5_demo

在这里插入图片描述

6、执行测试

./rknn_yolov5_demo ./model/RK3588/yolov5s-640-640.rknn ./model/bus.jpg letterbox ./result.jpg

在这里插入图片描述

7、测试结果

在这里插入图片描述

<think>好的,我需要回答用户关于YOLOv8在RKNN推理时的依赖项问题。首先,我需要理解RKNN是什么,以及YOLOv8部署到Rockchip平台的基本流程。 用户提到的引用中,引用[3]提到RKNN用于将YOLOv11 Pose模型转换为Rockchip硬件支持的格式,这同样适用于YOLOv8。所以,依赖项可能包括RKNN Toolkit、Rockchip NPU驱动、YOLOv8模型转换工具等。 根据常见的深度学习部署流程,依赖项通常分为软件和硬件两部分。软件方面需要RKNN的开发套件,用于模型转换和推理;硬件则需要支持NPU的设备,如RK3588。另外,模型转换时可能需要ONNX作为中间格式,因此ONNX的依赖库也是必要的。 用户可能还需要知道如何安装这些依赖,比如通过pip安装rknn-toolkit2,或者从Rockchip官网获取SDK。此外,Python环境、必要的深度学习框架如PyTorch,以及OpenCV等图像处理库也可能需要。 需要注意不同Rockchip芯片型号对应的RKNN Toolkit版本可能不同,需要版本匹配。同时,模型量化可能需要校准数据集,这也是依赖的一部分。 总结下来,依赖项应包括: 1. RKNN Toolkit 2. Rockchip NPU驱动和固件 3. Python环境及相关库(numpy, opencv-python) 4. 模型转换工具(如导出ONNX) 5. 校准数据集(用于量化) 6. 硬件设备(如RK3588) 可能还需要交叉编译工具链,如果是在x86主机上转换模型后部署到嵌入式设备。同时,确保操作系统支持相应的内核模块和驱动。 最后,根据用户提供的引用,需要正确标注引用来源,比如引用[3]提到生成ONNX,这可能涉及到模型导出步骤中的依赖。</think>在使用YOLOv8进行RKNN推理时,依赖项可分为**软件环境**、**硬件平台**和**模型转换工具**三部分。以下是具体内容: --- ### 一、软件环境依赖 1. **RKNN-Toolkit2** Rockchip官方提供的模型转换和推理工具包,支持模型量化、优化和部署[^3]。需通过Python安装: ```bash pip install rknn-toolkit2 ``` 2. **Python基础库** - `numpy`: 数值计算 - `opencv-python`: 图像预处理/后处理 - `onnx`或`onnxruntime`: 用于中间模型格式转换 3. **深度学习框架** 需安装PyTorch以加载原始YOLOv8模型(Ultralytics官方实现): ```bash pip install torch torchvision ultralytics ``` --- ### 二、硬件平台依赖 1. **Rockchip NPU设备** 如RK3588、RV1126等支持NPU加速的芯片,需确保已安装对应驱动和固件[^2][^3]。 2. **操作系统兼容性** - Linux环境(推荐Ubuntu 18.04/20.04) - 嵌入式设备需运行Rockchip定制版Linux或Android系统。 --- ### 三、模型转换依赖 1. **YOLOv8模型导出为ONNX** 需通过Ultralytics库将`.pt`模型转换为ONNX格式[^3]: ```python from ultralytics import YOLO model = YOLO("yolov8n.pt") model.export(format="onnx") ``` 2. **校准数据集** 模型量化(INT8)需提供代表性数据集(约100~200张样本图片)[^3]。 --- ### 四、部署流程示例 ```python # 示例RKNN模型加载与推理 from rknn.api import RKNN rknn = RKNN() # 加载ONNX模型并转换 rknn.config(target_platform='rk3588') rknn.load_onnx(model="yolov8n.onnx") rknn.build(do_quantization=True, dataset="calib_data.txt") rknn.export_rknn("yolov8n.rknn") # 初始化RKNN并推理 rknn.init_runtime(target="rk3588") outputs = rknn.inference(inputs=[input_image]) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值