20221227:Rockchip实战1-跑通官方模型转换

本文介绍了如何在RK1106平台上进行Rockchip的NPU模型转换,包括通过Docker安装工具链,PC模型仿真转换和板载模型转换的步骤,以及两者之间的区别和应用。重点讲解了RKNN-toolkit2的使用,并预告了后续关于模型量化、编译和部署的内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文核心内容:

1:介绍如何通过docker安装RK工具链

2:以RV1106为例说明PC模型仿真转换和板载模型转换

前提介绍说明:

Tips: Rockchip(瑞芯微)不同芯片对应的NPU和toolkit是不同的,下载时需注意区分!

平台

  • RK1808/RK1806

  • RV1109/RV1126

RKNPU:本工程主要为Rockchip NPU提供驱动、示例等。下载地址:

GitHub - rockchip-linux/rknpuContribute to rockchip-linux/rknpu development by creating an account on GitHub.https://github.com/rockchip-linux/rknpuRKNN-toolkit:本工程主要为将原始的模型转化成rknn模型。下载地址:

https://github.com/rockchip-linux/rknn-toolkithttps://github.com/rockchip-linux/rknn-toolkit

平台

  • RK3566/RK3568
  • RK3588/RK3588S
  • RV1103/RV1106

RKNPU2:本工程主要为Rockchip NPU提供驱动、示例等。下载地址:

GitHub - rockchip-linux/rknpu2Contribute to rockchip-linux/rknpu2 development by creating an account on GitHub.https://github.com/rockchip-linux/rknpu2RKNN-toolkit2:本工程主要为将原始的模型转化成rknn模型。下载地址:

https://github.com/rockchip-linux/rknn-toolkit2https://github.com/rockchip-linux/rknn-toolkit2

正文部分:以RK1106为例

下载对应的RKNPU2RKNN-toolkit2

1:首先打开rknpu2-master/doc目录

2:找到官方安装指南:Rockchip_RV1106_Quick_Start_RKNN_SDK_V1.4.0_CN.pdf。

里面提供了两种按照方式:不想折腾,推荐docker安装

A:通过 pip install 安装

B:通过 Docker 镜像安装

 3:下载RK_NPU_SDK

在rknn-toolkit2页面中,下拉找到Download,将RK_NPU_SDK下载到本地。其中里面包含所有的发布包、docker镜像、example十里、doc说明文档、平台工具等。

 下载解压后如图所示:

4:加载官方镜像

cd rknn-toolkit2-1.4.0/
cd  docker/
docker load --input rknn-toolkit2-1.4.0-cp36-docker.tar.gz
docker images

load  镜像

查看镜像 

 创建容器

docker run --privileged=true -it --shm-size 8G --name=RK_Convert1106 -v /home/lilai/mnt4T/Shared/RKConvert_1106:/home 141504379c0f /bin/bash

5:运行PC仿真模型,并测试推理结果

代码路径: rknn-toolkit2-1.4.0/examples/onnx/yolov5/test.py

 再来细看一下这个test.py脚本,包含模型的转换和测试两部分。

6:生成板子部署模型:代码路径:

rknpu2-master/examples/rknn_yolov5_demo/convert_rknn_demo/yolov5/onnx2rknn.py

7:PC仿真模型与板子部署模型的区别在哪里呢?

A:PC仿真模型作用

        1-测试模型转换过程是否正常(验证算子是否都支持)

        2-衡量转换后模型的精度情况(模型本身是否精度有问题、量化方式、参数是否有问题)

        3-评测转换后模型的指标(占用、推理等)

B:板子部署模型作用

        1-就是生成可以在板子上运行推理的rknn模型。

C:PC仿真模型与板子部署模型不要混用

D:两者转换操作时候的具体区别如下图,可放大对比

        1:板子部署模型转换时候指定了运行的芯片类型

后续文章:将记录以下内容:

1:转换自己的模型、普通量化、混合精度量化等

2:RKNPU2的编译以及使用方法

3:RK的交叉编译以及部署调试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微风❤水墨

你的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值