Pandas中DataFrame关联操作(concat、append、merge、join)

本文详细介绍了Pandas中DataFrame的四种关联操作:concat、append、merge和join。concat和append主要用于DataFrame的拼接,而merge和join则进行关联操作,类似于SQL中的JOIN。merge能实现列与索引的关联,join仅限于索引关联。通过实例展示了不同参数设置下的操作效果,包括并集、交集、左连接、右连接和外连接等。
摘要由CSDN通过智能技术生成

Pandas中DataFrame关联操作(concat、append、merge、join)
原文链接:https://blog.csdn.net/ai_1046067944/article/details/86481276

结论:

concat与append是属于拼接操作
concat简略形式,只能在axis=0上进行合并
merge与join属于关联操作,类似于sql中的join操作
merge可以实现列与索引上关联操作,join只能索引上关联操作
关联操作基本上用merge就可以了

一、Concat操作
函数:

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
      keys=None, levels=None, names=None, verify_integrity=False,
      copy=True)

1、aixs=0 行拼接,效果与obj1.append(obj2)是相同的
2、ignore_index=False 是否忽略索引而重建
3、join  “inner”:列的交集 “outer”:列的并集
4、append函数
   pd.append(other, ignore_index=False, verify_integrity=False, sort=None)
   a、other其它dataframe
   b、忽略索引
   c、类似于pd.concat(axis=0)

案例:

df1 = pd.DataFrame({‘A’: [‘A0’, ‘A1’, ‘A2’, ‘A3’],
‘B’: [‘B0’, ‘B1’, ‘B2’, ‘B3’],
‘C’: [‘C0’, ‘C1’, ‘C2’, ‘C3’],
‘D’: [‘D0’, ‘D1’, ‘D2’, ‘D3’]},
index=[0, 1, 2, 3])

df2 = pd.DataFrame({‘A’: [‘A4’, ‘A5’, ‘A6’, ‘A7’],
‘B’: [‘B4’, ‘B5’, ‘B6’, ‘B7’],
‘E’: [‘C4’, ‘C5’, ‘C6’, ‘C7’],
‘F’: [‘D4’, ‘D5’, ‘D6’, ‘D7’]},
index=[2, 3, 10, 11])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值