Pandas中DataFrame关联操作(concat、append、merge、join)
原文链接:https://blog.csdn.net/ai_1046067944/article/details/86481276
或
结论:
concat与append是属于拼接操作
concat简略形式,只能在axis=0上进行合并
merge与join属于关联操作,类似于sql中的join操作
merge可以实现列与索引上关联操作,join只能索引上关联操作
关联操作基本上用merge就可以了
一、Concat操作
函数:
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
keys=None, levels=None, names=None, verify_integrity=False,
copy=True)
1、aixs=0 行拼接,效果与obj1.append(obj2)是相同的
2、ignore_index=False 是否忽略索引而重建
3、join “inner”:列的交集 “outer”:列的并集
4、append函数
pd.append(other, ignore_index=False, verify_integrity=False, sort=None)
a、other其它dataframe
b、忽略索引
c、类似于pd.concat(axis=0)
案例:
df1 = pd.DataFrame({‘A’: [‘A0’, ‘A1’, ‘A2’, ‘A3’],
‘B’: [‘B0’, ‘B1’, ‘B2’, ‘B3’],
‘C’: [‘C0’, ‘C1’, ‘C2’, ‘C3’],
‘D’: [‘D0’, ‘D1’, ‘D2’, ‘D3’]},
index=[0, 1, 2, 3])df2 = pd.DataFrame({‘A’: [‘A4’, ‘A5’, ‘A6’, ‘A7’],
‘B’: [‘B4’, ‘B5’, ‘B6’, ‘B7’],
‘E’: [‘C4’, ‘C5’, ‘C6’, ‘C7’],
‘F’: [‘D4’, ‘D5’, ‘D6’, ‘D7’]},
index=[2, 3, 10, 11])