数据特征预处理

本文探讨了特征工程的重要性,特别是针对HR数据的预处理步骤,包括数据清洗和特征预处理。数据清洗涉及样本采集和异常值处理,如使用Pandas库的函数进行空值处理。特征预处理涵盖了特征选择、特征变换(如对数化、离散化、归一化)、特征降维(如PCA、LDA)和特征衍生。特征选择旨在去除无关或冗余特征,而特征衍生通过数学运算创建新特征,以增强模型性能。
摘要由CSDN通过智能技术生成

一、特征工程

        数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。

        特征工程包括:特征使用(数据选择,可用性)、特征获取(特征来源,特征存储)、特征处理(数据清洗,特征预处理)、特征监控(现有特征、新特征)

二、数据清洗

样本采集(抽样):样本要具有代表性,样本比例要平衡以及不平衡时应如何处理,考虑全量数据

异常值(空值)处理:1.识别异常值(Pandas:isnull()函数)2.处理异常值:(1)直接丢弃(Pandas: drop()/dropna()/drop_duplicated()函数)(2)替代异常值(Pandas:fillna()函数)(3)插值填充(Pandas:interpolate()---Series)

##异常值处理练习
#引入工具包
import pandas as pd
import numpy as np
#输入数据
df=pd.DataFrame({"A":["a0","a1","a1","a2","a3","a4"],"B":["b0","b1","b2","b2","b3",None],
                "C":[1,2,None,3,4,5],"D":[0.1,10.2,11.4,8.9,9.1,12],"E":[10,19,32,25,8,None],
                "F":["f0","f1","g2","f3","f4","f5"]})
#查看数据
df
#识别异常值,True为空值所在位置
df.isnull()
#去掉空值
df.dropna()
#只想去掉其中一种或几种属性的空值
df.dropna(subset=["B"])
##识别A中的重复值
df.duplicated(["A"])
df.duplicated(["A","B"]) #A和B同时重复的值
#重复值的删除,keep="first/last/False"表示删除第一个/最后一个/全部,默认First
df.drop_duplicates(["A"],keep="first")
#标注异常值
df.fillna("b*")#把异常值标注为b*
#用均值填充
df.fillna(df["E"].mean())
#插值法,只能用于series
df["E"].interpolate()
df["E"].interpolate(method="spline",order=3) #method选择插值方法,这里选三次样条插值法
#四分位数确定上下界判断异常值
upper_q=df["D"].quantile(0.75) #上四分位数
lower_q=df["D"].quantile(0.25) #下四分位数
q_int=upper_q-lower_q  #四分位差
k=1.5
df[df["D"]>lower_q-k*q_int][df["D"]<upper_q+k*q_int]
#索引里填入条件来删除异常值
df[[True if item.startswith("f") else False for item in list(df["F"].values)]]

三、特征预处理

主要包括:特征选择、特征变换(对指化、离散化、数据平滑、归一化/标准化、数值化、

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数据预处理是机器学习非常重要的一步,它包括对原始数据进行清洗、转换和归一化等操作,以便更好地使用在模型训练。在Python,有许多库可以帮助我们进行数据预处理特征的操作,下面是一些常用的方法: 1. 缺失值处理:常见的处理方法包括删除缺失值、填充缺失值(如均值、位数等)、使用插值法等。在Python,可以使用pandas库的fillna()函数来填充缺失值。 2. 特征编码:将非数值型的特征转换成数值型特征。常用的编码方法包括独热编码(One-Hot Encoding)、标签编码(Label Encoding)等。在Python,可以使用pandas库的get_dummies()函数进行独热编码。 3. 特征缩放:将不同范围的特征值缩放到相同的范围内,以避免某些特征对模型训练的影响过大。常用的缩放方法包括标准化(Standardization)和归一化(Normalization)。在Python,可以使用scikit-learn库的StandardScaler和MinMaxScaler类来进行特征缩放。 4. 特征选择:选择对目标变量有较强相关性的特征。常用的特征选择方法包括相关系数、方差阈值、递归特征消除等。在Python,可以使用scikit-learn库的SelectKBest和RFE等类来进行特征选择。 5. 特征降维:将高维度的特征转换为低维度的特征,以减少特征数量和计算复杂度。常用的降维方法包括主成分分析(PCA)和线性判别分析(LDA)。在Python,可以使用scikit-learn库的PCA和LDA类来进行特征降维。 这些是数据预处理特征的常见方法,在实际应用根据具体情况选择合适的方法进行处理。希望对你有所帮助!如果还有其他问题,请继续提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值