题意:一开始获得奖品的概率q=2%,给你每场游戏获胜的概率,如果赢了,没有获得奖品,q = min(100%,q+2%),如果输了,q = min(100%,q+1.5%)。问你获得奖品的期望步数。
题解:dp[i]表示获得奖品为q时的步数,因为有1.5%,所以所有数都扩大两倍。对于dp[i] = 1.0 + 本场获得胜利但没有赢奖品的后续步数 + 本场输了的后续步数。用记忆化搜索,当q>=200的时候,q=200,return 1/P。初始时dp[i]都等于-1,当dp[i]大于-1时直接return。答案是dp[4]。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 205;
double dp[maxn];
double P;
double dfs(int q)
{
if(q>=200)
q = 200;
if(q == 200)
return 1/P;
if(dp[q]>-1)
return dp[q];
double Q = q/200.0;
return dp[q] = 1.0+P*(1-Q)*dfs(q+4)+(1-P)*dfs(q+3);
}
int main()
{
int T;
scanf("%d",&T);
for(int t=1; t<=T; t++)
{
int p;
scanf("%d",&p);
for(int i=1;i<=200;i++)
{
dp[i] = -1;
}
P = p/100.0;
dfs(4);
printf("Case %d: %.10f\n",t,dp[4]);
}
}