前序中序构造二叉树

前序中序构造二叉树(lc105)

思路

首先思考前序序列和中序序列的特点,前序每次首先遍历当前节点,然后才会依次进入左子树和右子树;而中序则首先进入左子树,结束以后遍历当前节点,最后进入右子树。因此利用这两个特性,我们可以通过前序序列构造当前的节点,用中序序列定位当前节点的左子节点和右子节点,同时还要进入左子树和右子树进行递归构造。
在进入左子树递归构造时,需要首先考虑此时左子节点可能存在的区域,根据中序序列的特点可知,左子树肯定在当前节点的左边,右子树肯定在当前节点的右边。那么如果我们已经找到了当前节点,便可以据此作为分界点,确定递归时的范围区域。
确定递归探查的区域之后,还需要考虑如何确定左子节点和右子节点的位置。当然,这个的前提是存在左子节点和右子节点,此时,可以容易想到的是前序遍历本来就是遍历完当前节点就遍历左子树,那么前序序列中,左子节点的位置就是前当前节点的位置+1,而右子节点的位置则需要跳过所有的左子树的节点,那么如何知道左子树的所有节点个数呢?这里又需要用到中序序列的特点,它的所有左子树位于当前节点的左边,那么我们可以根据记录的范围的left和谈查到的当前节点的下标pos,两者作差即是左子树的大小。因此也就确定了右子节点的位置,同时也就确定了进入右子树中递归时前序序列的当前节点。

优化

在上述过程中很重要的一步是:在中序序列的指定范围中,查找前序序列当前节点的位置,每次递归函数中都需要进行这步操作,对时间复杂度有些影响,那么可否对此进行优化呢?我们需要查找的是前序序列当前节点所对应的在中序序列中的下标,那么我们可以提前将所有节点对应的中序序列中的下标存放在哈希表中,这样之后便可以直接从哈希表中取得对应的下标,时间复杂度降为O(1),但增加了O(n)的空间复杂度。

代码

class Solution {
public:
    unordered_map<int, int> m;
    //参数:前序序列,中序序列,中序搜素的起始位置,结束位置,当前前序的位置,当前节点
    void dfs(vector<int>& pre, vector<int>& ino, int left, int right, int i, TreeNode* cur) {
        int pos = m[pre[i]];
        //for(pos = left; pos<=right && ino[pos] != pre[i]; pos++);
        if(pos > left) {
            //中序遍历的范围为left到探察找的位置,以及探查到的位置到right
            //寻找子节点时的方法:起始位置是i,左子节点的偏移量是1,右子节点的偏移量是当前节点的左子树的大小,也是中序中起始位置和探查到的位置下标之差,即pos-left+1
            cur->left = new TreeNode(pre[i+1]);
            dfs(pre, ino, left, pos-1, i+1, cur->left);
        } 
        if(pos < right) {
            cur->right = new TreeNode(pre[i+pos-left+1]);
            dfs(pre, ino, pos+1, right, i+pos-left+1, cur->right);
        }
    }
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if(!preorder.size()) return nullptr;
        for(int i=0;i<preorder.size();i++) {
            m[inorder[i]] = i;
        }
        TreeNode* root = new TreeNode(preorder[0]);
        dfs(preorder, inorder, 0, preorder.size()-1, 0, root);
        return root;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值