前言
双指针算法在实际场景中非常实用,对于某些看似需要O(n^2)
的时间复杂度才可以解决的问题,我们可以利用题目场景对应的某种特殊的单调性
对算法进行优化,让时间复杂度巧妙地降到O(n)
。
for (int i = 0, j = 0; i < n; i ++ ) {
while (j < i && check(i, j)) j ++ ;
// 具体问题的逻辑
}
// 常见问题分类:
// (1) 对于一个序列,用两个指针维护一段区间
// (2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作
一、题目陈述
二、解决思路
为了找到单调性,我们让i指针
从前往后遍历a数组
,让j指针
遍历b数组
。对于每一个a[i]
,我们的目的都是要尝试找到一个j
,使得a[i]+b[j]>=x
,并且保证j
的值最小。此时,我们可以容易发现这个遍历过程中的单调性,即i指针
向右移动时,a[i]
变大,意味着j指针
要么不动,要么会向左移动,让b[j]
不增。可以基于此单调性,利用双指针模板在规定的时间复杂度内解决问题。
三、代码实现
#include<iostream>
using namespace std;
const int N = 1e5+10;
int a[N],b[N];
int n,m,x;
int main() {
cin>>n>>m>>x;
for(int i=0;i<n;i++) cin>>a[i];
for(int i=0;i<m;i++) cin>>b[i];
for(int i=0,j=m-1;i<n;i++) {
while(j>=0 && a[i]+b[j]>x) j--;
if(a[i]+b[j]==x) {
cout<<i<<' '<<j<<endl;
break;
}
}
return 0;
}
总结
双指针算法是对暴力枚举O(n^2)
的优化,优化依据是题目环境下可以证明的单调性。