AcWing800 数组元素的目标和(双指针)

题目:AcWing800 数组元素的目标和


前言

双指针算法在实际场景中非常实用,对于某些看似需要O(n^2)的时间复杂度才可以解决的问题,我们可以利用题目场景对应的某种特殊的单调性对算法进行优化,让时间复杂度巧妙地降到O(n)

for (int i = 0, j = 0; i < n; i ++ ) {
    while (j < i && check(i, j)) j ++ ;
    // 具体问题的逻辑
}
// 常见问题分类:
// (1) 对于一个序列,用两个指针维护一段区间
// (2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作

一、题目陈述

在这里插入图片描述

二、解决思路

为了找到单调性,我们让i指针从前往后遍历a数组,让j指针遍历b数组。对于每一个a[i],我们的目的都是要尝试找到一个j,使得a[i]+b[j]>=x,并且保证j的值最小。此时,我们可以容易发现这个遍历过程中的单调性,即i指针向右移动时,a[i]变大,意味着j指针要么不动,要么会向左移动,让b[j]不增。可以基于此单调性,利用双指针模板在规定的时间复杂度内解决问题。

三、代码实现

#include<iostream>
using namespace std;
const int N = 1e5+10;
int a[N],b[N];
int n,m,x;
int main() {
    cin>>n>>m>>x; 
    for(int i=0;i<n;i++) cin>>a[i];
    for(int i=0;i<m;i++) cin>>b[i];
    
    for(int i=0,j=m-1;i<n;i++) {
        while(j>=0 && a[i]+b[j]>x) j--;
        if(a[i]+b[j]==x) {
            cout<<i<<' '<<j<<endl;
            break;
        }
    }
    
    return 0;
}

总结

双指针算法是对暴力枚举O(n^2)的优化,优化依据是题目环境下可以证明的单调性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codertea

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值