先来看问题
给定两个升序排序的有序数组 A 和 B,以及一个目标值 x。
数组下标从 0 开始。
请你求出满足 A[i]+B[j]=x 的数对 (i,j)。
数据保证有唯一解。
输入格式
第一行包含三个整数 n,m,x,分别表示 A 的长度,B 的长度以及目标值 x。
第二行包含 n 个整数,表示数组 A。
第三行包含 m 个整数,表示数组 B。
输出格式
共一行,包含两个整数 i 和 j。
数据范围
数组长度不超过 105。
同一数组内元素各不相同。
1≤数组元素≤109
输入样例:
4 5 6
1 2 4 7
3 4 6 8 9
输出样例:
1 1
双指针算法的核心就是制造出“单调性”的存在,在这里我们欲将两个数组元素之和的单调性与目标x联系在一起,于是我们假设已经找到了 A [ i ] 与 B [ j ] A[i]与B[j] A[i]与B[j]使得 A [ i ] + B [ j ] > = x A[i]+B[j]>=x A[i]+B[j]>=x,此时只移动 j j j,两元素之和不断变小,而当某一时刻 A [ i ] + B [ j ] < = x A[i]+B[j]<=x A[i]+B[j]<=x,我们再移动 i i i,使得两元素之和变大,便可找到目标的 i , j i,j i,j
为了最快找到上述的
i
,
j
i,j
i,j我们将i置于0,j置于末尾去一个个探寻。
代码
#include <iostream>
#define ios \
ios::sync_with_stdio(false); \
cin.tie(nullptr); \
cout.tie(nullptr)
using namespace std;
const int N = 1e5 + 10;
int n, m, x;
int a[N], b[N];
int main() {
ios;
cin >> n >> m >> x;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < m; i++) {
cin >> b[i];
}
for (int i = 0, j = m - 1; i < n; i++) {
while (a[i] + b[j] > x && j >= 0) {
j--;
}
if (a[i] + b[j] == x) {
cout << i << " " << j << endl;
break;
}
}
return 0;
}