主成分分析PCA 与 梯度上升法

本文介绍了主成分分析PCA的概念,探讨了使用梯度上升法求解PCA问题,并详细阐述了PCA如何求取数据的主成分及前n个主成分。PCA在高维数据向低维映射中的应用,特别是在scikit-learn库中的实现。通过MNIST数据集示例,展示了PCA在数据降噪和提高识别准确度方面的效果,最后讨论了PCA在人脸识别中的角色——特征脸。
摘要由CSDN通过智能技术生成

什么是PCA

主成分分析,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据。在数据压缩消除冗余和数据噪音消除领域都有广泛应用。
具体的,假如我们的数据集是n维的,共有m个数据(x(1),x(2),…,x(m))。我们希望将这m个数据的维度从n维降到n’维,希望这m个n’维的数据集尽可能的代表原始数据集。我们知道数据从n维降到n’维肯定会有损失,但是我们希望损失尽可能的小。那么如何让这n’维的数据尽可能表示原来的数据呢?
我们先看看最简单的情况,也就是n=2,n’=1,也就是将数据从二维降维到一维。数据如下图。我们希望找到某一个维度方向,它可以代表这两个维度的数据。图中列了两个向量方向,u1和u2,那么哪个向量可以更好的代表原始数据集呢?从直观上也可以看出,u1比u2好。
在这里插入图片描述
为什么u1比u2好呢?可以有两种解释,第一种解释是样本点到这个直线的距离足够近,第二种解释是样本点在这个直线上的投影能尽可能的分开。
假如我们把n’从1维推广到任意维,则我们的希望降维的标准为:样本点到这个超平面的距离足够近,或者说样本点在这个超平面上的投影能尽可能的分开。
基于上面的两种标准,我们可以得到PCA的两种等价推导。
更多推导过程可以参见:https://www.cnblogs.com/pinard/p/6239403.html
下面这篇文章讲得也非常详细:
https://blog.csdn.net/zhongkelee/article/details/44064401

使用梯度上升法求解PCA问题

目标函数及其梯度:
在这里插入图片描述
在这里插入图片描述

求数据的主成分PCA

import numpy as np

def demean(X):
    return X - np.mean(X, axis=0)

def f(w, X):
    '''目标函数,求该函数最大值'''
    return np.sum((X.dot(w) ** 2)) / len(X)
    
def df_math(w, X):
    '''求解梯度方法1'''
    return X.T.dot(X.dot(w)) * 2. / len(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值