PCA与梯度上升法(一)

目录

一、什么是PCA

二、使用梯度上升法求解PCA问题

1、相关原理

2、具体实现

3、求数据的前n个主成分


一、什么是PCA

主成分分析(Principal Component Analysis)是一种非监督的机器学习算法,它主要用于数据的降维,通过降维对数据可视化可以提高机器学习算法效率,方便于人类理解的特征。同时它还可以去噪,能够让机器学习算法识别率更好。

实现步骤如下:

  1. 将样本均值归为0(demean),即所有样本减去样本的均值
  2. 求一个轴方向w=(w1,w2),当我们所有样本映射到w之后,使得该方差值最大,即:​​​​​​var(Xpro)=\frac{1}{m}\sum_{i=1}^{m}\left \| X^{(i)}* w\right \|^{2}

假设有一根红色的向量代表w=(w1,w2),一个蓝色的点代表X(i),它也是一个向量X(i)=(X1,X2),该点映射到w上的位置是(Xpr1,Xpr2),那么现在只需要求点X(i)在红色向量上那根蓝色的线距离,因此也推导出了如下公式:

因此,最终主成分分析问题转换成了一个目标函数的最优化问题,即求w,使得        var(Xpro)=\frac{1}{m}\sum_{i=1}^{m}\l(X^{(i)}*w)^{2}    最大。

二、使用梯度上升法求解PCA问题

1、相关原理

主成分分析问题目标:求w,使得    f(x)=\frac{1}{m}\sum_{i=1}^{m}(X_{1}^{(i)}w_{1}+X_{2}^{(i)}w_{2}+...+X_{n}^{(i)}w_{n})^{2}  最大,对该式子进行推导如下:

因此,最终我们只需要求    \frac{2}{m}*X^{T}(Xw)    这样一个式子即可。

2、具体实现

代码示例:

import numpy as np
import matplotlib.pyplot as plt

#生成虚拟测试用例
X = np.empty((100,2))
X[:,0] = np.random.uniform(0.,100.,size=100)  #特征1——100个样本
X[:,1] = 0.75 * X[:,0] + 3.+ np.random.normal(0,10.,size=100)  #特征2——与特征1有一个线性关系

#样本均值归0
def demean(X):
    return X - np.mean(X,axis=0)

#设置目标函数
def f(w,X):
    return np.sum((X.dot(w)**2)) / len(X)

##数学推导函数
def df_math(w,X):
    return X.T.dot(X.dot(w)) * 2. / len(X)

#验证
def df_debug(w,X,epsilon=0.0001):
    res = np.empty(len(w))
    for i in range(len(w)):
        w_1 = w.copy()
        w_1[i] += epsilon
        w_2 = w.copy()
        w_2[i] -= epsilon
        res[i] = (f(w_1,X) - f(w_2,X)) / (2 * epsilon)
    return res

'''
在推导公式中,w实际上只代表方向,是一个单位向量,它的模=1;
但由于w = w + eta * gradient会导致w的模!=1,因此需要设置一个函数来使w始终保持为单位方向向量
'''
def direction(w):
    return w / np.linalg.norm(w)

#梯度上升法
def gradient_ascent(df,X,initial_w,eta,n_iters = 1e4,epsilon=1e-8):
    
    w = direction(initial_w)
    i_iter = 0
    
    while i_iter < n_iters:
        gradient = df(w,X)
        last_w = w
        w = w + eta * gradient
        w = direction(w)    #每次求一个单位方向向量
        if(abs(f(w,X) - f(last_w,X)) < epsilon):
            break
        
        i_iter += 1

    return w


#随机一个初始向量——不能用0向量开始
initial_w = np.random.random(X.shape[1])

#训练
eta = 0.001

#gradient_ascent(df_debug,X_demean,initial_w,eta)
gradient_ascent(df_math,X_demean,initial_w,eta)

运行结果:

值得注意的是,在此过程中我们并没有使用StandardScaler标准化数据,这是因为PCA内部实现过程是基于用户给的数据X,如果X标准差为1,那么它的变化对于X来说并不是一个线性的变化,会导致最终求出来的主成分坐标轴方向和原始数据方向是不一样的。

代码示例:

#可视化
w = gradient_ascent(df_math,X_demean,initial_w,eta)
plt.scatter(X_demean[:,0],X_demean[:,1])
plt.plot([0,w[0]*30],[0,w[1]*30],color='r')
plt.show()

运行结果:

这根直线它对应的方向就是我们求出来的主成分,它把这些样本映射到这个轴上,并且样本间保持的方差是最大的。在这里它是我们求出来的第一个主成分,因此也叫做第一主成分。

3、求数据的前n个主成分

代码示例:

#求第二主成分
X2 = np.empty(X.shape)
for i in range(len(X)):
    X2[i] = X[i] - X[i].dot(w) * w

w2 = gradient_ascent(df_math,X2,initial_w,eta)

#验证——如果结果趋近于0,则说明是w与w2互相垂直
w.dot(w2)

运行结果:

代码示例:

#封装一个求前n个主成分的函数
def first_n_components(n,X,eta=0.01,n_iters = 1e4,epsilon=1e-8):
    
    X_pca = X.copy()
    X_pca = demean(X_pca)
    res = []
    for i in range(n):
        initial_w = np.random.random(X_pca.shape[1])
        w = gradient_ascent(df_math,X_pca,initial_w,eta)
        res.append(w)
        
        X_pca = X_pca - X_pca.dot(w).reshape(-1,1) * w  #将减去分量的过程向量化
        
    return res


#测试
first_n_components(2,X)  #X只有两个维度,最多两个主成分

运行结果:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值