python脚本运行gprMax3.0批量仿真GPR数据

本文介绍如何使用Python脚本自动化批量生成GPRMax3.0仿真数据,包括GPRB-scan图像的生成、数据格式转换及图像展示,解决了手动操作繁琐的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python脚本运行gprMax3.0批量仿真GPR B-scan图像

1.引言

探地雷达(GPR)结合深度学习通常需要大量的训练数据集,对于GPR仿真数据集的获取,我们一般通过gprMax生成,而gprMax3.0仿真数据时需要通过cmd命令提示符窗口人工一条一条地输入指令(通过cmd命令生成GPR B-scan图像:可以参考我的上一篇博客.),对于批量生成GPR数据非常不方便。因此,有必要写一些Python脚本,实现自动化批量生成GPR数据集。

2.Python脚本

该Python脚本可以一次性批量生成指定文件夹中多个GPR输入文件(.in文件或者.txt文件)的输出文件(.out文件),并且可以把输出文件(.out文件)保存为数据格式(.txt文件)和图像格式(.png文件)。运行该脚本之前需要安装好gprMax3.0(可以参考我的上一篇博客

import sys
sys.path.append('D:/my_gprmax/gprMax') #把gprMax安装路径添加至系统,使import可以找到gprMax模块
import os
from gprMax.gprMax import api
import numpy as np
from tools.plot_Bscan import get_output_data, mpl_plot
from tools.outputfiles_merge import merge_files
import matplotlib.pyplot as plt


num_scan = 120 #正演仿真次数(A扫描次数)->B扫描
geo_only = False #是否只生成模型图

path = os.getcwd()#获得当前脚本所在的文件路径
#print(path)
root = path+'/in_data'   #指定输入文件的路径
files = os.listdir(root)   #得到路径下的文件夹名或者文件名,形成列表

for file in files:
    if file.endswith('.txt'):  #找到.txt文件
        # print(file)
        filename = root+'/'+file  #得到文件名的绝对路径
        fi = filename[0:-4]        #去掉文件名后的.txt后缀,注意保留了前面的路径
        api(filename, n=num_scan, geometry_only=geo_only) #geometry_only:仅几何图形
        merge_files(fi, removefiles=True)

        """B扫描绘图"""
        filename_b = fi+'_merged.out'
        rxnumber = 1
        rxcomponent = 'Ez'
        #获取回波数据
        outputdata, dt = get_output_data(filename_b, rxnumber, rxcomponent)
        #保存回波数据
        fi2 = fi.split('/')[-1]  #得到文件名,去掉了前面的路径
        out_path = path+'/out_data'
        if (os.path.exists(out_path)):
            pass
        else:
            os.mkdir(out_path)
        np.savetxt(out_path+'/'+fi2+'.txt',outputdata,delimiter=' ')#未去除直达波
        
        #绘图
        plt.imshow(outputdata, extent=[0, outputdata.shape[1], outputdata.shape[0], 0], interpolation='nearest', aspect='auto', cmap='gray',
                   vmin=-np.amax(np.abs(outputdata)), vmax=np.amax(np.abs(outputdata)))
        img_path = path+'/img_data'
        if (os.path.exists(img_path)):
            pass
        else:
            os.mkdir(img_path)
        plt.savefig(img_path+'/'+fi2+'.png',dpi=300)#保存图片
        # plt.show()

3.可能出现的报错

运行之后,如果出现报错:“no module named terminaltables",则打开cmd命令提示符窗口,使用“pip install terminaltables ”指令,安装好这个模块。若运行之后还出现报错:“no module named gprMax.fields_updates_ext",则gprMax3.0安装的时候可能出现了错误,我的解决办法是,下载:这个gprMax文件 (提取码:3ss8 ),并将这个文件替换gprMax文件夹下的gprMax模块。
Alt

4.数据展示

alt
实验批量生成了3个输入文件的输出文件,结果如下:
alt
alt
alt

### 实现探地雷达(Ground Penetrating Radar, GPR)成像中的BP算法 在探地雷达应用中,反投影(Back Projection, BP)算法是一种用于重建地下结构图像的有效方法[^1]。该算法通过收集来自不同角度的雷达回波数据并将其投射到目标区域来形成二维或三维图像。 #### 反投影(BP)算法原理概述 BP算法的核心在于利用时间延迟信息将接收到的数据映射至空间位置上。对于每一个采样点,计算其相对于天线阵列中心的时间差,并据此确定信号源的位置。此过程重复多次直到完成整个扫描范围内的所有像素点赋值操作。 #### MATLAB实现方案 以下是采用MATLAB编写的简化版BP算法代码片段: ```matlab function img_bp = bp_algorithm(sar_data, c, fs, R_min, R_max, theta) % sar_data: SAR原始采集矩阵 % c : 波速(m/s) % fs : 采样频率(Hz) % R_min : 最近距离(m) % R_max : 最远距离(m) % theta : 扫描角向量(rad) N_range = size(sar_data, 1); % 距离单元数 N_angle = length(theta); % 方位角数量 img_bp = zeros(N_range,N_angle); for i=1:N_angle for j=1:N_range r = linspace(R_min,R_max,N_range); t_delay = 2*sqrt(r(j)^2+(r(i))^2)/c; index = round(t_delay * fs)+1; if(index>0 && index<=length(sar_data(:,i))) img_bp(j,i)=sar_data(index,i)*exp(-1j*4*pi*r(j)/lambda); end end end imagesc(abs(ifftshift(ifft(img_bp)))); axis image; colormap jet; colorbar; end ``` 上述函数实现了基本的BP算法流程,其中`linspace()`用来创建均匀分布的距离矢量;`ifft()`执行逆傅里叶变换以恢复实际物理意义下的反射强度分布图谱;最后调用`imagesc()`显示处理后的结果图片。
评论 73
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值