为什么Sigmoid和Tanh激活函数会导致梯度消失?

1、激活函数的由来

从生物学上来说,是因为人脑的细胞接受刺激从而产生活动,首先需要一定的阈值,没有达到阈值,几乎没用。而不同的刺激产生的输 出也是不同的,达到一定值后就饱和了,再加大也没用。

(1)Sigmoid函数

数学公式:

\sigma (z)=\frac{1}{1+e^{-z}}

Sigmoid激活函数的曲线如图1所示,输入z映射到区间(0,1),当z很大时,f(z)趋近于1;当z很小时,f(z)趋近于0。

它的导数为:

f(z)^{'} = f(z)(1-f(z))

在这个情况下,当z很大或很小时都会趋近于0,造成梯度消失的现象。

(2)Tanh激活函数

数学表达式:

f(z) = tanh(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}

当z很大时,f(z)趋近于1;当z很小时,f(z)趋近于-1,其导数如下:

f(z)^{'} = 1-(f(z))^{2}

此时当z很小或很大时就会趋近于0。同样会出现梯度消失问题。

从图可以看出,其实Tanh函数相当于Sigmoid的平移。

1 import matplotlib.pyplot as plt  
2 import numpy as np 
3 # 生成x数据
4 x = np.linspace(-10,10,100)
5 y = np.tanh(x)
6 plt.plot(x,y)
7 plt.show()

现有的一些激活函数:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林语微光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值