DataWhale集成学习Task04 分类
分类与回归
分类模型的输出值是离散的
回归模型的输出值是连续的
想要什么类型的输出:
优秀,良好,中等,及格,不及格 是分类输出
具体的分数 是回归输出
分类与聚类
监督学习(知道答案标签):分类
无监督学习(没有标签):聚类
Logistic 回归(常用于二分类)
sigmoid函数
鸢尾花分类示例代码(数据集有3类)
http://datawhale.club/t/topic/2762
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
# 加载数据集
iris=datasets.load_iris()
x=iris.data[:100]
y=iris.target[:100]
y.resize(y.reshape[0],1)
x_train,x_test,y_train.y_test=train_test_split(x,y,test_size=0.3,random_state=0)
def sigmoid(z):
return 1/(1+np.exp(-z))
def lossfunc(X,y,w):
loss=0
X=np.array(X)
y=np.array(y)
w=np.array(w)
size=y.shape[0]
### ???待处理
for i in range(size):
if y[i]==1:
cost=cost-np.log(sigmoid(np.dot(X[i],w.T)))
else:
cost=cost-
分类模型指标
稀饭泥 https://blog.csdn.net/weixin_42365443/article/details/115190918
真正例TP:是指模型将正类别样本正确地预测为正类别。
真负例TN:是指模型将负类别样本正确地预测为负类别。
假正例FP:是指模型将负类别样本错误地预测为正类别。
假负例FN:是指模型将正类别样本错误地预测为负类别。
准确率
精确率
召回率
F1值
混淆矩阵
二分类与多分类