2021-07-20

DataWhale集成学习Task04 分类

分类与回归

分类模型的输出值是离散的
回归模型的输出值是连续的

想要什么类型的输出:

优秀,良好,中等,及格,不及格 是分类输出
具体的分数 是回归输出

分类与聚类

监督学习(知道答案标签):分类
无监督学习(没有标签):聚类

Logistic 回归(常用于二分类)

sigmoid函数
在这里插入图片描述

鸢尾花分类示例代码(数据集有3类)

http://datawhale.club/t/topic/2762

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split

# 加载数据集
iris=datasets.load_iris()
x=iris.data[:100]
y=iris.target[:100]
y.resize(y.reshape[0],1)
x_train,x_test,y_train.y_test=train_test_split(x,y,test_size=0.3,random_state=0)


def sigmoid(z):
	return 1/(1+np.exp(-z))

def lossfunc(X,y,w):
	loss=0
	X=np.array(X)
	y=np.array(y)
	w=np.array(w)
	size=y.shape[0]

### ???待处理
	for i in range(size):
		if y[i]==1:
			cost=cost-np.log(sigmoid(np.dot(X[i],w.T)))
		else:
			cost=cost-

分类模型指标

稀饭泥 https://blog.csdn.net/weixin_42365443/article/details/115190918

真正例TP:是指模型将正类别样本正确地预测为正类别。
真负例TN:是指模型将负类别样本正确地预测为负类别。
假正例FP:是指模型将负类别样本错误地预测为正类别。
假负例FN:是指模型将正类别样本错误地预测为负类别。

准确率在这里插入图片描述
精确率

在这里插入图片描述
召回率

在这里插入图片描述

F1值
在这里插入图片描述
混淆矩阵

二分类与多分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值