pytorch迁移学习-keras工具包实现resnet

CNN训练一个模型可能会遇到的问题:

  • 训练的数据量少,模型会过拟合

  • 调参花费时间多

  • 模型大训练时间长

    ⇊ \downdownarrows
    怎么使模型训练更加简单?
    ⇊ \downdownarrows
    迁移学习:用别人训练好的模型对自己的数据进行训练(用别人训练好的权重参数初始化自己的参数)
    ⇊ \downdownarrows
    如何保证用别人的模型:数据结构,输入输出数据格式都要与别人一样
    ⇊ \downdownarrows
    迁移学习策略:

    • A用别人的参数初始化继续迭代别人的参数
    • B直接把别人训练好的参数做最终参数
      ⇊ \downdownarrows
      迁移学习用在什么地方?
      用在全连接层之前的layers,全链接层需要根据自己的任务设计相应的参数

加载模型地址

如何构建一个net

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    # 选择合适的模型,不同模型的初始化方法稍微有点区别
    model_ft = None
    input_size = 0

    if model_name == "resnet":
        """ Resnet152
        """
        model_ft = models.resnet152(pretrained=use_pretrained)#pretrained置为true值会帮我们把模型下载
        set_parameter_requires_grad(model_ft, feature_extract)#需要冻住哪些层进行训练
        num_ftrs = model_ft.fc.in_features#把最后一层的全连接层拿到手
        model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),#修改全连接层参数为(2048,102)
                                   nn.LogSoftmax(dim=1))#nn.LogSoftmax(dim=1)横向计算log_softmax,功能:将输出转化为概率,在计算损失值的时候用,不用交叉熵
        input_size = 224
  1. 加载net,把pretrained model设为true,相当于用别人训练好的作为最终结果
    model_ft = models.resnet152(pretrained=use_pretrained)
  2. 指定要冻住(参数不更新)的哪些层
set_parameter_requires_grad(model_ft, feature_extract)#需要冻住哪些层进行训练
def set_parameter_requires_grad(model, feature_extracting):#要不要把某些层指定为false不做训练 参数不做更新
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False#把梯度更新设为false冻住梯度更新
  1. 把最后的全连接层改成与自己任务一直的参数
 model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),#修改全连接层参数为(2048,102)
                                   nn.LogSoftmax(dim=1))#nn.LogSoftmax(dim=1)横向计算log_softmax,功能:将输出转化为概率,在计算损失值的时候用,不用交叉熵

整体代码流程展示:

加载models中提供的模型,并且直接用训练的好权重当做初始化参数

model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
#是否用人家训练好的特征来做
feature_extract = True 
# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()

if not train_on_gpu:   #if x is None=if not x:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')
    
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def set_parameter_requires_grad(model, feature_extracting):#要不要把某些层指定为false不做训练 参数不做更新
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False
model_ft = models.resnet152()#152层模型
model_ft

这里的全连接层使20481000,是10001分类任务,等下要改成2048102,做102分类任务
在这里插入图片描述

参考pytorch官网例子

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):#传入 模型名字 分类数  是否用别人训练好的模型 模型是否下载
    # 选择合适的模型,不同模型的初始化方法稍微有点区别
    model_ft = None
    input_size = 0

    if model_name == "resnet":
        """ Resnet152
        """
        model_ft = models.resnet152(pretrained=use_pretrained)#pretrained置为true值会帮我们把模型下载
        set_parameter_requires_grad(model_ft, feature_extract)#需要冻住哪些层进行训练
        num_ftrs = model_ft.fc.in_features#把最后一层的全连接层拿到手
        #nn.Sequential()是nn.module()的容器,用于按顺序包装一组网络层。
        model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),#修改全连接层参数为(2048,102)
                                   nn.LogSoftmax(dim=1))#nn.LogSoftmax(dim=1)横向计算log_softmax,功能:将输出转化为概率,在计算损失值的时候用,不用交叉熵
        input_size = 224

    elif model_name == "alexnet":
        """ Alexnet
        """
        model_ft = models.alexnet(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224

    elif model_name == "vgg":
        """ VGG11_bn
        """
        model_ft = models.vgg16(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224

    elif model_name == "squeezenet":
        """ Squeezenet
        """
        model_ft = models.squeezenet1_0(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
        model_ft.num_classes = num_classes
        input_size = 224

    elif model_name == "densenet":
        """ Densenet
        """
        model_ft = models.densenet121(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier.in_features
        model_ft.classifier = nn.Linear(num_ftrs, num_classes)
        input_size = 224

    elif model_name == "inception":
        """ Inception v3
        Be careful, expects (299,299) sized images and has auxiliary output
        """
        model_ft = models.inception_v3(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        # Handle the auxilary net
        num_ftrs = model_ft.AuxLogits.fc.in_features
        model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
        # Handle the primary net
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs,num_classes)
        input_size = 299

    else:
        print("Invalid model name, exiting...")
        exit()

    return model_ft, input_size

设置哪些层需要训练

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)#传入 模型名字 分类个数 。。。

#GPU计算
model_ft = model_ft.to(device)

# 模型保存名字
filename='checkpoint.pth'

# 是否训练所有层
params_to_update = model_ft.parameters()#parameters里存的就是weight,parameters()会返回一个生成器(迭代器)
print("Params to learn:")
if feature_extract:
    params_to_update = []
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
            print("\t",name)
else:
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)

Downloading: “https://download.pytorch.org/models/resnet152-b121ed2d.pth” to C:\Users\Administrator/.cache\torch\checkpoints\resnet152-b121ed2d.pth
100%|███████████████████████████████████████████████████████████████████████████████| 230M/230M [01:38<00:00, 2.44MB/s]
Params to learn:
fc.0.weight
fc.0.bias

model_ft

… (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Sequential(
(0): Linear(in_features=2048, out_features=102, bias=True)
(1): LogSoftmax()
)

优化器设置

# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)#lr=1e-2 学习率
#学习率衰减策略 随着学习次数增加进行衰减 step_size=7 迭代多少epoch后学习率衰减多少 gamma=0.1衰减学习率比率
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
#定义损失函数
#最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了,nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()

训练模块

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False,filename=filename):#模型 batch数据 损失函数 优化器 迭代次数 是否勇别的网络模型 文件名
    since = time.time()#time.time()是统计的wall time(即墙上时钟),也就是系统时钟的时间戳(1970纪元后经过的浮点秒数)。所以两次调用的时间差即为系统经过的总时间。
    best_acc = 0
    """
    checkpoint = torch.load(filename)
    best_acc = checkpoint['best_acc']
    model.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    model.class_to_idx = checkpoint['mapping']
    """
    model.to(device)

    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]['lr']]

    best_model_wts = copy.deepcopy(model.state_dict())#把验证最好的模型保存

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # 训练和验证
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # 训练
            else:
                model.eval()   # 验证

            running_loss = 0.0
            running_corrects = 0

            # 把数据都取个遍
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)#传入到GPU当中
                labels = labels.to(device)

                # 梯度清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                with torch.set_grad_enabled(phase == 'train'):
                    if is_inception and phase == 'train':#resnet不执行这步操作
                        outputs, aux_outputs = model(inputs)
                        loss1 = criterion(outputs, labels)
                        loss2 = criterion(aux_outputs, labels)
                        loss = loss1 + 0.4*loss2
                    else:#resnet执行的是这里----------------------------------
                        outputs = model(inputs)
                        loss = criterion(outputs, labels)

                    _, preds = torch.max(outputs, 1)#torch.max(a,1) 返回每一行中最大值的那个元素,且返回其索引(返回最大元素在这一行的列索引)

                    # 训练阶段更新权重
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # 计算损失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
            
            
            time_elapsed = time.time() - since
            print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
            

            # 得到最好那次的模型
            if phase == 'valid' and epoch_acc > best_acc:#如果当前是验证集,如果当前的准确率比之前最好的准确率高:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())#把当前最好的权重参数复制过来
                #构造字典模型保存当前状态
                state = {
                  'state_dict': model.state_dict(),
                  'best_acc': best_acc,
                  'optimizer' : optimizer.state_dict(),
                }
                torch.save(state, filename)#保存当前最好的模型保存到路径filename里
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)
        
        print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
        LRs.append(optimizer.param_groups[0]['lr'])
        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # 训练完后用最好的一次当做模型最终的结果
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

开始训练!

model_ft, val_acc_history,train_acc_history, valid_losses, train_losses, LRs  = 
 train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20,
  is_inception=(model_name=="inception"))

Time elapsed 35m 20s
train Loss: 2.5828 Acc: 0.8205
Time elapsed 35m 29s
valid Loss: 7.2196 Acc: 0.6968
Optimizer learning rate : 0.0010000

Epoch 19/19

Time elapsed 37m 11s
train Loss: 2.4293 Acc: 0.8248
Time elapsed 37m 21s
valid Loss: 5.7857 Acc: 0.7213
Optimizer learning rate : 0.0100000

Training complete in 37m 21s
Best val Acc: 0.721271

再继续训练所有层

  • 之前是训练全连接层,现在把全连接层之前的所有层再训练一遍看看效果如何

但凡网络中有参数的就进行训练,把改训练的参数置为true

for param in model_ft.parameters():
    param.requires_grad = True

# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(params_to_update, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#学习率衰减策略不变

# 损失函数不变
criterion = nn.NLLLoss()
# Load the checkpoint
#在之前保存最好的一次模型基础上进行训练
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])#加载模型读入所有的权重参数
optimizer.load_state_dict(checkpoint['optimizer'])
#model_ft.class_to_idx = checkpoint['mapping']
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  =
 train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10,
  is_inception=(model_name=="inception"))

Epoch 0/9

Time elapsed 3m 29s
train Loss: 2.3541 Acc: 0.8291
Time elapsed 3m 38s
valid Loss: 7.1179 Acc: 0.6895

E:\ProgramData\Anaconda3\envs\python36\lib\site-packages\torch\optim\lr_scheduler.py:82: UserWarning: Detected call oflr_scheduler.step()beforeoptimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order:optimizer.step()beforelr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule.See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
Optimizer learning rate : 0.0010000

 Epoch 1/9

Time elapsed 7m 7s
train Loss: 2.2214 Acc: 0.8318
Time elapsed 7m 16s
valid Loss: 6.3605 Acc: 0.7188
Optimizer learning rate : 0.0010000

      Epoch 9/9

Time elapsed 36m 21s
train Loss: 1.9166 Acc: 0.8422
Time elapsed 36m 31s
valid Loss: 5.4032 Acc: 0.7298
Optimizer learning rate : 0.0010000

Training complete in 36m 32s
Best val Acc: 0.729829

测试网络效果(走一次前向传播)

输入一张测试图像,看看网络的返回结果:

probs, classes = predict(image_path, model)#传入 图像路径 模型
print(probs)#得到概率值
print(classes)#得到分类索引
> [ 0.01558163  0.01541934  0.01452626  0.01443549  0.01407339]
> ['70', '3', '45', '62', '55']#在.jsion文件中找到索引对应的类名

注意预处理方法需相同

加载训练好的模型

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)

# GPU模式
model_ft = model_ft.to(device)

# 保存文件的名字
filename='seriouscheckpoint.pth'

# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

测试数据预处理

  • 测试数据处理方法需要跟训练时一样才可以
  • crop操作的目的是保证输入的大小是一致的
  • 标准化操作也是必须的,用跟训练数据相同的mean和std,但是需要注意一点训练数据是在0-1上进行标准化,所以测试数据也需要先归一化
  • 最后一点,PyTorch中颜色通道是第一个维度,跟很多工具包都不一样,需要转换
def process_image(image_path):
    # 读取测试数据
    img = Image.open(image_path)
    #保证输入的图像是三通道的彩色图像,图片大小为224*224
    # Resize,thumbnail方法只能进行缩小,所以进行了判断
    if img.size[0] > img.size[1]:#把图像resize成256*256
        img.thumbnail((10000, 256))
    else:
        img.thumbnail((256, 10000))
    # Crop操作 把图像裁剪为224*224
    left_margin = (img.width-224)/2
    bottom_margin = (img.height-224)/2
    right_margin = left_margin + 224
    top_margin = bottom_margin + 224
    img = img.crop((left_margin, bottom_margin, right_margin,   
                      top_margin))
    # 相同的预处理方法
    img = np.array(img)/255#做归一化操作
    mean = np.array([0.485, 0.456, 0.406]) #provided mean
    std = np.array([0.229, 0.224, 0.225]) #provided std
    img = (img - mean)/std
    
    # 注意颜色通道应该放在第一个位置
    img = img.transpose((2, 0, 1))
    
    return img
def imshow(image, ax=None, title=None):
    """展示数据"""
    if ax is None:
        fig, ax = plt.subplots()
    
    # 颜色通道还原
    image = np.array(image).transpose((1, 2, 0))
    
    # 预处理还原
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    image = std * image + mean
    image = np.clip(image, 0, 1)
    
    ax.imshow(image)
    ax.set_title(title)
    
    return ax
image_path = 'image_06621.jpg'
img = process_image(image_path)
imshow(img)
img.shape

(3, 224, 224)

测试一个batch数据

# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()

model_ft.eval()

if train_on_gpu:
    output = model_ft(images.cuda())#把数据放入GPU执行
else:
    output = model_ft(images)

output表示对一个batch中每一个数据得到其属于各个类别的可能性

output.shape
#batch中有8个数据,一个图片有102个分类概率值

torch.Size([8, 102])

得到概率最大的那个

_, preds_tensor = torch.max(output, 1)

preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds

array([77, 22, 46, 46, 64, 93, 28, 48], dtype=int64)

展示预测结果

fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2

for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    plt.imshow(im_convert(images[idx]))
    ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                 color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()
#绿色标签表示预测对的 红色标签表示预测错的

咱也不知为何图片小于5MB还是不能插入CSDN里面!将就着看吧。。。
使用到的数据集链接

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

磁生电

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值