奇异值分解(SVD)原理与在降维中的应用

参考资料

奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

1. 回顾特征值和特征向量

我们首先回顾下特征值和特征向量的定义如下:
A x = λ x A x=\lambda x Ax=λx
其中A是一个 n × n n \times n n×n 的实对称矩阵, x x x 是一个 n n n 维向量,则我们说 λ \lambda λ 是矩阵A的一个特征值,而 x x x 是矩阵A的特征值 λ \lambda λ 所对应的特佂向量。

求出特佂值和特征向量有什么好处呢?

就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的 n n n 个特征值 λ 1 ≤ λ 2 ≤ … ≤ λ n \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n} λ1λ2λn, 以及这 n n n 个特征值所 对应的特征向量 { w 1 , w 2 , … w n } \left\{w_{1}, w_{2}, \ldots w_{n}\right\} {w1,w2,wn} ,,如果这 n n n 个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:浅紫色文字
A = W Σ W − 1 A=W \Sigma W^{-1} A=WΣW1
其中W是这 n n n特佂向量所张成的 n × n n \times n n×n 维矩阵,而 Σ \Sigma Σ 为这 n n n特佂值为主对角线的 n × n n \times n n×n 维矩阵。

一般我们会把W的这 n n n 个特佂向量标准化,即满足 ∥ w i ∥ 2 = 1 \left\|w_{i}\right\|_{2}=1 wi2=1 ,或者说 w i T w i = 1 w_{i}^{T} w_{i}=1 wiTwi=1 ,此时 W W W n n n 个特征向量为标准正交基,满足 W T W = I W^{T} W=I WTW=I ,即 W T = W − 1 W^{T}=W^{-1} WT=W1 , 也就是说 W为酉矩阵(方阵)。

这样我们的特征分解表达式可以写成
A = W Σ W T A=W \Sigma W^{T} A=WΣWT

注意到要进行特佂分解,矩阵A必须为方阵。那/如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗? 答案是可以,此时我们的SVD登场了。

2. SVD的定义

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m × n \times n ×n 的矩阵,那么我们定义矩阵A的SVD为:
A = U Σ V T A=U \Sigma V^{T} A=UΣVT
其中 U是一个 m × m m \times m m×m 的矩阵, Σ \Sigma Σ 是一个 m × n m \times n m×n 的矩阵,除了主对角线上的元素以外全为 0 , 主对角线上的每个元素都称为奇异值 V \mathrm{V} V 是一个 n × n n \times n n×n 的矩阵。U和V都是酉矩阵,即满足 U T U = I , V T V = I U^{T} U=I, V^{T} V=I UTU=I,VTV=I 。下图可以很形象的看出上面SVD的定义:
在这里插入图片描述
那么我如何求出SVD分解后的 U , Σ , V U, \Sigma, V U,Σ,V 这三个矩阵呢?

如果找们将A的转置和A做矩阵乘法,那么会得到 n × n n \times n n×n 的一个方阵 A T A A^{T}A ATA 。既然 A T A A^{T}A ATA 是方阵,那么我们就可以进行特佂分解,得到的特佂值和特征向量满足下式:

( A T A ) v i = λ i v i \left(A^{T} A\right) v_{i}=\lambda_{i} v_{i} (ATA)vi=λivi
这样找们就可以得到矩阵 A T A A^{T} A ATA n \mathrm{n} n 个特征值 λ \lambda λ和对应的 n \mathrm{n} n 个特征向量 v v v

A T A A^{T} A ATA 的所有特征向量张成一个 n × n n \times n n×n 的矩阵 V V V ,就 是 我 们 SVD 公 式 里 面 的 V V V 矩阵了。一般我们将 V \mathrm{V} V 中的每个特征向量叫做A的右奇异向量

如果找们将A和A的转置做矩阵乘法,那么会得到 m × m m \times m m×m 的一个方阵 A A T A A^{T} AAT 。既然 A A T A A^{T} AAT 是方阵,那么我们就可以进行特佂分解,得到的特佂值和特征向量满足下式:
( A A T ) u i = λ i u i \left(A A^{T}\right) u_{i}=\lambda_{i} u_{i} (AAT)ui=λiui
这样找们就可以得到矩阵 A A T A A^{T} AAT m \mathrm{m} m 个特征值和对应的 m \mathrm{m} m 个特佂向量 u u u 了。将 A A T A A^{T} AAT 的所有特征向量张成一个 m × m m \times m m×m 的矩阵 U \mathrm{U} U ,就是我们SVD公式里面的 U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量

U U U V V V我们都求出来了 ,现在就剩下奇异矩阵 Σ \Sigma Σ没有求出来了。由于 Σ \Sigma Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。

我们注竟到:
A = U Σ V T ⇒ A V = U Σ V T V ⇒ A V = U Σ ⇒ A v i = σ i u i ⇒ σ i = A v i / u i A=U \Sigma V^{T} \Rightarrow A V=U \Sigma V^{T} V \Rightarrow A V=U \Sigma \Rightarrow A v_{i}=\sigma_{i} u_{i} \Rightarrow \sigma_{i}=A v_{i} / u_{i} A=UΣVTAV=UΣVTVAV=UΣAvi=σiuiσi=Avi/ui
这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵 Σ \Sigma Σ

上面还有一个问题没有讲,就是我们说 A T A A^{T} A ATA 的特征向量组成的就是我们SVD中的 V \mathrm{V} V 矩阵,而 A A T A A^{T} AAT 的特征向量组成的就是我们SVD中的 U U U矩阵,这有什么 根据吗? 这个其实很容易证明,我们以V矩阵的证明为例。
A = U Σ V T ⇒ A T = V Σ T U T ⇒ A T A = V Σ T U T U Σ V T = V Σ 2 V T A=U \Sigma V^{T} \Rightarrow A^{T}=V \Sigma^{T} U^{T} \Rightarrow A^{T} A=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T} A=UΣVTAT=VΣTUTATA=VΣTUTUΣVT=VΣ2VT
上式证明使用了: U T U = I , Σ T Σ = Σ 2 U^{T} U=I, \Sigma^{T} \Sigma=\Sigma^{2} UTU=I,ΣTΣ=Σ2 。可以看出 A T A A^{T} A ATA 的特征向量组成的的确就是我们SVD中的V知阵。类似的方法可以得到 A A T A A^{T} AAT 的特征向量组成 的就是我们SVD中的U矩阵。

进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:
σ i = λ i \sigma_{i}=\sqrt{\lambda_{i}} σi=λi
这样也就是说,我们可以不用 σ i = A v i / u i \sigma_{i}=A v_{i} / u_{i} σi=Avi/ui 来计算奇异值,也可以通过求出 A T A A^{T} A ATA 的特征值取平方根来求奇异值。

3. SVD计算举例

这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:
A = ( 0 1 1 1 1 0 ) \mathbf{A}=\left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right) A=011110
我们首先求出 A T A A^{T} A ATA A A T A A^{T} AAT
A T A = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 2 1 1 2 ) A A T = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 1 1 0 1 2 1 0 1 1 ) \begin{aligned} \mathbf{A}^{\mathbf{T}} \mathbf{A} &=\left(\begin{array}{lll} 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right)\left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{ll} 2 & 1 \\ 1 & 2 \end{array}\right) \\ \mathbf{A} \mathbf{A}^{\mathbf{T}} &=\left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{lll} 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right)=\left(\begin{array}{lll} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{array}\right) \end{aligned} ATAAAT=(011110)011110=(2112)=011110(011110)=110121011
进而求出 A T A A^{T} A ATA 的特征值和特征向量:
λ 1 = 3 ; v 1 = ( 1 / 2 1 / 2 ) ; λ 2 = 1 ; v 2 = ( − 1 / 2 1 / 2 ) \lambda_{1}=3 ; v_{1}=\left(\begin{array}{c} 1 / \sqrt{2} \\ 1 / \sqrt{2} \end{array}\right) ; \lambda_{2}=1 ; v_{2}=\left(\begin{array}{c} -1 / \sqrt{2} \\ 1 / \sqrt{2} \end{array}\right) λ1=3;v1=(1/2 1/2 );λ2=1;v2=(1/2 1/2 )
接着求 A A T A A^{T} AAT 的特征值和特征向量:
λ 1 = 3 ; u 1 = ( 1 / 6 2 / 6 1 / 6 ) ; λ 2 = 1 ; u 2 = ( 1 / 2 0 − 1 / 2 ) ; λ 3 = 0 ; u 3 = ( 1 / 3 − 1 / 3 1 / 3 ) \lambda_{1}=3 ; u_{1}=\left(\begin{array}{c} 1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6} \end{array}\right) ; \lambda_{2}=1 ; u_{2}=\left(\begin{array}{c} 1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2} \end{array}\right) ; \lambda_{3}=0 ; u_{3}=\left(\begin{array}{c} 1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3} \end{array}\right) λ1=3;u1=1/6 2/6 1/6 ;λ2=1;u2=1/2 01/2 ;λ3=0;u3=1/3 1/3 1/3

利用 A v i = σ i u i , i = 1 , 2 A v_{i}=\sigma_{i} u_{i}, i=1,2 Avi=σiui,i=1,2 求奇异值:
( 0 1 1 1 1 0 ) ( 1 / 2 1 / 2 ) = σ 1 ( 1 / 6 2 / 6 1 / 6 ) ⇒ σ 1 = 3 ( 0 1 1 1 1 0 ) ( − 1 / 2 1 / 2 ) = σ 2 ( 1 / 2 0 − 1 / 2 ) ⇒ σ 2 = 1 \begin{aligned} &\left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{l} 1 / \sqrt{2} \\ 1 / \sqrt{2} \end{array}\right)=\sigma_{1}\left(\begin{array}{c} 1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6} \end{array}\right) \Rightarrow \sigma_{1}=\sqrt{3} \\ &\left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{c} -1 / \sqrt{2} \\ 1 / \sqrt{2} \end{array}\right)=\sigma_{2}\left(\begin{array}{c} 1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2} \end{array}\right) \Rightarrow \sigma_{2}=1 \end{aligned} 011110(1/2 1/2 )=σ11/6 2/6 1/6 σ1=3 011110(1/2 1/2 )=σ21/2 01/2 σ2=1
最终得到 A \mathrm{A} A 的奇异值分解为:
A = U Σ V T = ( 1 / 6 1 / 2 1 / 3 2 / 6 0 − 1 / 3 1 / 6 − 1 / 2 1 / 3 ) ( 3 0 0 1 0 0 ) ( 1 / 2 1 / 2 − 1 / 2 1 / 2 ) A=U \Sigma V^{T}=\left(\begin{array}{ccc} 1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\ 2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\ 1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \end{array}\right)\left(\begin{array}{cc} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right)\left(\begin{array}{cc} 1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2} \end{array}\right) A=UΣVT=1/6 2/6 1/6 1/2 01/2 1/3 1/3 1/3 3 00010(1/2 1/2 1/2 1/2 )

4. SVD的一些性质

上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的下降特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大前的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:
A m × n = U m × m Σ m × n V n × n T ≈ U m × k Σ k × k V k × n T A_{m \times n}=U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T} \approx U_{m \times k} \Sigma_{k \times k} V_{k \times n}^{T} Am×n=Um×mΣm×nVn×nTUm×kΣk×kVk×nT
其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵 U m × k , Σ k × k , V k × n T U_{m \times k,} \Sigma_{k \times k}, V_{k \times n}^{T} Um×k,Σk×k,Vk×nT来表示。如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。
在这里插入图片描述
由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。下面我们就对SVD用于PCA降维做一个介绍。

5. SVD用于PCA

主成分分析 (PCA) 原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵 X T X X^{T} X XTX 的最大的 d \mathrm{d} d 个特征向量,然后用这最大的 d \mathrm{d} d 个特征向量张成 的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵 X T X X^{T} X XTX ,当样本数多样本特征数也多的时候,这个计算量是很大的。

注意到我们的SVD也可以得到协方差矩阵 X T X X^{T} X XTX最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵 X T X X^{T} X XTX,也能求出我们的右奇异矩阵 V V V。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。

另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?

假设我们的样本是 m × n m \times n m×n 的矩阵X,如果我们通过SVD找到了矩阵 X X T X X^{T} XXT 最大的 d \mathrm{d} d 个特征向量张成的 m × d m \times d m×d 维矩阵U,则我们如果进行如下处理:
X d × n ′ = U d × m T X m × n X_{d \times n}^{\prime}=U_{d \times m}^{T} X_{m \times n} Xd×n=Ud×mTXm×n

可以得到一个 d × n d×n d×n的矩阵X‘,这个矩阵和我们原来的 m × n m×n m×n维样本矩阵X相比,行数从m减到了d,可见对行数进行了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。

6. SVD小结

SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

磁生电

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值