[Python学习笔记]Python 性能分析

本文通过Python的性能分析工具cProfile和snakeviz,对一个包含大量网络请求和数据库查询的脚本进行了优化。优化前脚本中make_request函数耗时长,主要瓶颈在建立网络连接。优化后,make_request和数据库查询次数大幅减少,显著提高了整体执行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一章节 [Python学习笔记]Requests性能优化之Session 中,通过在 Resquests 中使用 session,将 Python 脚本的运行效率提升了 3 倍。但当时对问题的排查主要是基于程序实现逻辑的推断,并没有实质性的证据。

本次使用 Python 的性能分析工具对脚本进行分析,找到优化点。首先介绍两个工具 cProfile 和 snakeviz 对程序性能进行定性分析。

工具介绍

1. cProfile

cProfile 是 Python 自带的性能分析模块,不需要额外安装,可以统计程序中函数的调用次数和时间。

python -m cProfile -o log.profile macd_all.py
  • 以上命令会运行 macd_all.py,对每个函数的调用进行统计,并记录到 log.profile 文件中,方便分析。

2. snakeviz

SnakeViz是一个Python模块,用于可视化Python程序的性能分析结果。

安装

pip install snakeviz

分析 cProfile 日志

snakeviz.exe -p 8080 log.profile
  • 以上命令会打开一个 HTTP Server,使用8080 端口,并自动打开本地浏览器。

说明:

  • ncalls:表示函数调用的次数;
  • tottime:表示指定函数的总的运行时间,除掉函数中调用子函数的运行时间;
  • percall:(第一个percall)等于 tottime/ncalls;
  • cumtime:表示该函数及其所有子函数的调用运行的时间,即函数开始调用到返回的时间;
  • percall:(第二个percall)即函数运行一次的平均时间,等于cumtime/ncalls;
  • filename:lineno(function):每个函数调用的具体信息;

性能分析

运行优化前脚本

python -m cProfile -o log1.profile macd_all_v1.py

snakeviz.exe -p 8080 log1.profile

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

看图可以发现耗时最长的函数就是make_request 这个网络请求函数,而在下面明细中可以看见connect of _socket.socket 耗时很长。
初步可以判断,程序大量时间耗费在建立网络连接方面。

运行优化后脚本

python -m cProfile -o log1.profile macd_all_v2.py

snakeviz.exe -p 8080 log2.profile

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

对比优化前的分析图,可以发现 make_request 这个函数耗时从 107s 降低到了 24.3s , connect of _socket.socket 调用次数从9040次降低到了1次,总耗时从 77.93s 下降到毫秒级别。

从分析图中可以看出当前耗时较长的函数是 'recv_into' of '_socket.socket',共调用 18037次,耗时 21.78s。
recv_info 会从套接字接收数据,并将其存储在给定的缓冲区中。

在《[Python学习笔记]Requests性能优化之Session》章节有提到,这个脚本会查询 9037 张表,共 1779929 条数据;写入 9037 张表,每个表 1 条数据。

脚本中涉及网络方面方面的操作:

  1. 从数据库查询所有股票代码(1次查询)
  2. 向数据库写入测试记录(1次写入)
  3. 根据代码逐个查询交易数据(9037次查询)
  4. 将结果写入数据库(1次写入)

由此可知,程序主要优化点在于减低数据库查询次数,比如说一次查询多只股票的数据。

参考

Python基础(11) 性能测试工具 cProfile
使用 cProfile 和火焰图调优 Python 程序性能
[量化投资-学习笔记013]Python+TDengine从零开始搭建量化分析平台-策略回测进阶
[Python学习笔记]Requests性能优化之Session

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DBA大董

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值