Python基础(11) 性能测试工具 cProfile

0. 前言

1. cProfile 的使用

1.1. API 介绍

  • profile.run(command, filename=None, sort=-1)
    • command是字符串形式,包含python代码。
  • profile.runctx(command, globals, locals, filename=None, sort=-1)
    • 与上面的函数基本相同,就是添加了上下文信息(即本地变量与全局变量集合)
  • profile.Porfile(timer=None, timeunit=0.0, subcalls=True, builtins=True)
    • 本函数用于更精细的性能测试。
    • 该类主要包含的方法有 enable/disable/create_stats/print_stats/dump_stats/run/runctx/runcall
    • runcall方法调用的是函数,而不是一个字符串。

1.2. 单线程使用

  • 直接通过命令行运行:
    • 命令 python -m cProfile [-o output_file] [-s sort_order] (-m module | myscript.py)
    • 特点:使用方便,不需要额外编写源码,但只能监控主线程的运行时间。
  • 通过编程处理
    • 其实就是通过 run方法执行需要测试的函数即可。
import cProfile
import re
cProfile.run('re.compile("foo|bar")')
  • 通过 cPorilfe.Profile 类实现
import cProfile, pstats, io
from pstats import SortKey
pr = cProfile.Profile()
pr.enable()
# ... do something ...
pr.disable()
s = io.StringIO()
sortby = SortKey.CUMULATIVE
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
print(s.getvalue())

1.2. 多线程使用

  • cPorfile的文档里完全没说过不支持多线程的性能测试,更没提过在多线程下怎么使用了
  • 实现思路:为每个线程提供不同的 cprofile.Profile类。
  • 实现方法一:参考这里
    • 使用自定义线程类替代原始线程类,即重写run方法,创建cprofile.Profile类并导出结果。
    • 特点:每个线程都必须使用该类创建,不然就不能进行性能测试。对于一直第三方包自主创建线程就无法处理。
class ProfiledThread(threading.Thread):
    # Overrides threading.Thread.run()
    def run(self):
        profiler = cProfile.Profile()
        try:
            return profiler.runcall(threading.Thread.run, self)
        finally:
            profiler.dump_stats('myprofile-%d.profile' % (self.ident,))
  • 实现方法二:参考这里
    • 源代码是多进程的,但相信多线程也是一样的。
    • 没有继承类,对运行的函数进行了一次包装,可能用起来比上面那种稍微方便一点。
    • 但也存在相同的问题,即要能控制线程/进程的创建。
import multiprocessing
import cProfile
import time
def test(num):
    time.sleep(3)
    print 'Worker:', num

def worker(num):
    cProfile.runctx('test(num)', globals(), locals(), 'prof%d.prof' %num)


if __name__ == '__main__':
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(i,))
        p.start()

2. 结果解释以及可视化

2.1. 结果详解

  • 下面是官网给的一个输出结果样例
    • ncalls 函数调用次数
    • tottime 函数运行时间(不包括单独计算的子函数)
    • percall 每次调用平均运行时间
    • cumtime 函数累计运行时间(包括子函数)
    • percall 每次调用平均运行时间
    • filename:lineno(function) 文件名/行数以及对应的函数名
      197 function calls (192 primitive calls) in 0.002 seconds

Ordered by: standard name

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     1    0.000    0.000    0.001    0.001 <string>:1(<module>)
     1    0.000    0.000    0.001    0.001 re.py:212(compile)
     1    0.000    0.000    0.001    0.001 re.py:268(_compile)
     1    0.000    0.000    0.000    0.000 sre_compile.py:172(_compile_charset)
     1    0.000    0.000    0.000    0.000 sre_compile.py:201(_optimize_charset)
     4    0.000    0.000    0.000    0.000 sre_compile.py:25(_identityfunction)
   3/1    0.000    0.000    0.000    0.000 sre_compile.py:33(_compile)

2.2. 可视化工具 - snakeviz

  • 使用:

    • 第一步,安装 pip install snakeviz
    • 第二步,选择日志文件,运行命令 snakeviz log.profile
    • 第三步,打开浏览器查看。
  • 有两种展示方式:

    • ICICLE20201102114824.png
    • SUNBURSTimage-20201102115433553
作为Python的一个高级编程语言,有许多性能测试工具来帮助开发人员增强Python应用程序的性能。以下是Python的一些性能测试工具的介绍: 1. cProfile cProfilePython的内置性能分析模块。它提供了比Python标准模块profile更准确的性能分析数据,它可以为每个函数提供准确的时间分析数据。使用方法如下:在需要测试的函数加上@profile装饰(即在函数前加上@profile)。运行命令如下: ```python python -m cProfile your_script.py ``` 2. memory_profiler memory_profiler是Python的一个第三方模块,它可以分析Python应用程序的内存使用情况。使用方法如下: 在需要测试的函数加上@profile装饰执行命令: ```python python -m memory_profiler your_script.py ``` 3. line_profiler line_profiler是Python的一个第三方模块,它可以分析Python应用程序的每行代码的执行时间。使用方法如下:在需要测试的函数加上@profile装饰运行命令如下: ```python kernprof -l -v your_script.py ``` 4. timeit timeit是Python的内置模块,它可以用于度量小片段代码的执行时间。使用方法如下: ```python import timeit timeit.timeit('your_code_statement', number=10000) ``` 5. PyCharm profiler PyCharm是一个流行的Python集成开发环境,它包含一个性能分析工具,可以让你更好地了解你的代码。使用方法如下:运行 PyCharm,打开您的Python项目,单击 Run -> Profile,然后 PyCharm 将使用其性能分析器运行您的代码。 6. profile 该模块用于在 Python 中进行性能分析。它可以显示每个函数调用的执行时间,并为您提供有关应用程序性能瓶颈的详细信息。使用方法如下: ```python import profile profile.run('your_code_statement') ``` 7. unittest unittest是Python的内置模块之一,它用于Python应用程序的单元测试。单元测试可以帮助你确定Python应用程序中的错误和bug。 此模块还可以用于性能测试。 使用方法如下:编写一个测试用例类,在其中编写测试函数。运行命令如下: ```python python -m unittest test_module.py ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值