算法学习笔记(1) : 从感知机开始

1 感知机是什么

本文为感知机学习笔记,主要参考李航《统计学习方法》

定义

感知机(preceptron) 是一个经典的二分类模型,旨在特征空间中找到一个超平面,使得正负样本点尽可能分布在超平面两侧。

感知机的发展
  1. 1957年Rosenbllatt提出感知机,这在当时是一个非常令人兴奋的发现。
  2. 1960年,维德罗首次使用Delta学习规则用于感知器的训练步骤, 这两者的结合创造了一个良好的线性分类器。
  3. 1962年,Rosenbllatt,Novikoff等人进行了一系列理论研究 ,如感知机收敛定理等
  4. 1969年Marvin Minsky将感知器话题推到最高顶峰。他提出了著名的XOR问题和感知器数据线性不可分的情形,之后机器学习的研究处于休眠状态。
  5. 1981年,多层感知器(MLP)由伟博斯神经网络反向传播算法中具体提出。
  6. 1995年 , 机器学习领域中一个最重要的突破,支持向量(support vector machines, SVM )被提出,其来源于感知机

2感知机为什么可以分类——感知机原理

2.1模型

感知机是一个二类分类的线性模型,其输入为实例的特征向量, 输出为实例的类别,取+1和-1。
线性方程 w ∗ x + b = 0 w*x + b = 0 wx+b=0 对应特征空间的一个超平面。如下图:
在这里插入图片描述

2.2策略

感知机选择超平面的策略是误分类点到超平面的总距离最小
首先,任意一点x到超平面的距离为: ∣ w x + b ∣ ∣ ∣ w ∣ ∣ \frac{|wx+b|}{||w||} wwx+b
将超平面上方的点记为正类点,标签为1 。超平面下方的点标签则为-1 。注意到, w x + b > 0 wx+b>0 wx+b>0,说明x在超平面上方。 所以, y ( w x + b ) > 0 y(wx+b)>0 y(wx+b)>0则说明分类正确, − y ( w x + b ) > 0 -y(wx+b)>0 y(wx+b)>0则分类错误。
对于一个分类模型,误分类的点越少越好,当一个样本点已经在错误的一侧后,希望它距离超平面越近越好。也就是误分类的点到超平面总距离越小越好。
将所有误分类的点记为集合M(mistake), 则损失函数为: L o s s ( W , b ) = − ∑ x i ⊂ M y i ( w x i + b ) ∣ ∣ w ∣ ∣ Loss(W,b)=-\sum_{x_i\subset M}\frac{y_i(wx_i+b)}{||w||} Loss(W,b)=xiMwyi(wxi+b)
||w||的大小对解没有影响, 则最终感知机的学习策略, m i n L o s s ( W , b ) = − ∑ x i ⊂ M y i ( w x i + b ) min Loss(W,b)=-\sum_{x_i\subset M}y_i(wx_i+b) minLoss(W,b)=xiMyi(wxi+b)

2.3算法

确定损失函数之后,要做的就是找到使得损失函数最小的 ( w , b ) (w,b) (w,b)(感知机的求解算法为梯度下降法。求导知,损失函数对w,b的梯度分别为

  • ▽ w = − ∑ x i ⊂ M y i x i \triangledown _w=-\sum_{x_i\subset M}y_ix_i w=xiMyixi
  • ▽ b = − ∑ x i ⊂ M y i \triangledown _b=-\sum_{x_i\subset M}y_i b=xiMyi

算法:
1 初始化超平面 ( w 0 , b 0 ) (w_0,b_0) (w0,b0) ,阈值e.
2 计算误分类集合M
3 更新(w,b) w = w + η y i x i ; b = b + η y i w= w+\eta y_ix_i ; b= b+\eta y_i w=w+ηyixi;b=b+ηyi, 计算损失值。
4 重复2,3 直到损失值小于阈值e。

在这里插入图片描述
上图为感知机迭代过程

2.4对偶算法

感知机对偶形式的基本想法是, 在上述算法中可假设初始值 w 0 , b 0 w_0,b_0 w0,b0均为0, η = 1 \eta=1 η=1, 从梯度下降学习过程中可以看出,最后学习的w,b分别为( x i , y i x_i,y_i xi,yi线性组合的形式):

  • w = ∑ i = 1 N α i y i x i w=\sum_{i=1}^{N}\alpha_iy_ix_i w=i=1Nαiyixi
  • b = ∑ i = 1 N α i y i b=\sum_{i=1}^{N}\alpha_iy_i b=i=1Nαiyi

那么模型则为 f ( x ) = s i g n ( ∑ j = 1 N α j y j x j ⋅ x + b ) f(x) = sign(\sum_{j=1}^{N}\alpha_jy_jx_j \cdot x+b) f(x)=sign(j=1Nαjyjxjx+b)
α i \alpha_i αi表示第i个样本点参与更新的次数。 实例点更新的次数多,意味这它常被误分,也就离超平面较近,也就越难正确分类。这样的实例点对学习结果的影响最大。类似于SVM中的支持向量。
η ≠ 1 \eta\neq 1 η=1 α i \alpha_i αi也可以近似理解为更新次数。则对偶型式的算法为

1 α = ( α 1 , α 2 , ⋯   , α N ) T , α = 0 , b = 0 \alpha =(\alpha_1, \alpha_2, \cdots ,\alpha_N)^T , \alpha = 0,b=0 α=(α1,α2,,αN)T,α=0,b=0
2 若 y i ( ∑ j = 1 N α j y j x j ⋅ x + b ) ⩽ 0 y_i(\sum_{j=1}^{N}\alpha_jy_jx_j \cdot x+b)\leqslant 0 yi(j=1Nαjyjxjx+b)0, 则更新 :

  • α i = α i + η \alpha_i = \alpha_i+\eta αi=αi+η
  • b = b + η y i b=b+\eta y_i b=b+ηyi
    直到损失值小于阈值。
    对偶形式中训练实例只以内积的形式出现,为了计算快捷,可以将训练集中的内积计算出来以矩阵形式存储,这个矩阵就是Gram矩阵 G = [ x i ⋅ x j ] G=[x_i\cdot x_j] G=[xixj]
2.5理论性质——收敛性

在这里插入图片描述
这是《统计学习方法》p31的结论,主要证明了 对于线性可分数据集感知机是可以找到超平面将其完全划分的,而且梯度下降算法在训练中的误分类次数是有界的。详细证明参考书。

显然对于线性可分数据集,感知机的解不是唯一的,只要所有的点都被正确分类,就会停止迭代,所以初始点、步长不同,得到的解不同

3 感知机实现

3.1 Numpy实现perceptron

代码如下:

import numpy as np
import matplotlib.pyplot as plt
x_train=np.array([3,3,4,3,1,1]).reshape(-1,2,order='C')
y_train=np.array([1,1,-1]).reshape(-1,1)
#写一个整的函数,输入x_train ,y_train,eta ,输出 W=(w1.w2.b)
def perceptron(x_train,y_train,eta=1):
    N,p=x_train.shape
    #design matrix # x_Rd design x_Rd+1
    X=np.concatenate((x_train,np.ones(N).reshape(N,1)),axis=1)
    W=np.ones(p+1).reshape(p+1,1)
    #梯度下降,直到不在变化
    error=1
    while error>1e-05:
        loc = np.where(np.dot(X,W)*y_train<=0)[0]# 误分类点
        if len(loc)>0: 
            #error = sum((-1)*np.dot(X[loc,:],W)*y_train[loc,:])
            loc = loc[0]
        else : return W
        X_mis = X[loc]; Y_mis=y_train[loc]
        X_mis = X_mis.reshape(-1,p+1);Y_mis=Y_mis.reshape(-1,1)
        W_temp = W + eta*np.dot(Y_mis.T,X_mis).reshape(-1,1)
        error = np.dot((W-W_temp).T,W-W_temp)
        W=W_temp
        print(W)
    return W   
W=perceptron(x_train,y_train,eta=0.1)  
#预测函数
def predict_percep (x_test,W):
    pre=np.dot(x_test, W[:-1,:])+W[-1,:]
    pre[pre>=0]=1;pre[pre<0]=-1;
    return pre
y_predict = predict_percep(x_train,W)
3.4 调用sklearn实现perceptron
import numpy as np
from sklearn.datasets import make_classification
from sklearn.linear_model import Perceptron 
#生成二分类的样本
x,y = make_classification(n_samples=1000,n_features=2,n_redundant=0,n_informative=1,n_clusters_per_class=1)
# make_classification模拟生成分类样本
y = np.array([(lambda x:1  if x==1 else -1)(i) for i in y])
#分成训练集和测试集
x_train = x[:800,]
y_train = y[:800,]
x_test = x[800:,]
y_test= y[800:,]
clf = Perceptron(fit_intercept=False, shuffle=False)#实例化一个感知机模型
clf.fit(x_train,y_train)#使用训练数据进行训练
#得到训练结果,权重矩阵
print(clf.coef_)
#预测
acc = clf.score(x_test,y_test)
print(acc)#正确率
>0.972  
3.5 可视化
#正例和反例
positive_location = np.where(y_train==1)
negetive_location = np.where(y_train==-1)
#画出正例,负例,超平面
from matplotlib import pyplot as plt
plt.scatter(x_train[positive_location,][:,:,0],x_train[positive_location,][:,:,1],marker='*')
plt.scatter(x_train[negetive_location,][:,:,0],x_train[negetive_location,][:,:,1],color="red",marker='+')
line_x = np.arange(-4,4)
line_y = line_x * (-clf.coef_[0][0] / clf.coef_[0][1]) - clf.intercept_
plt.plot(line_x,line_y)
plt.show()

在这里插入图片描述

总结

感知机是基础的ML模型,是svm的前生。
感知机的策略为最小误分类点到超平面距离 ,算法为梯度下降法。
感知机是线性分类器,对于非线性问题和高维问题效果交叉,而SVM通过核技巧解决了这个问题。
感知机及其对偶形式算法效率上的区别是什么,话句话说,什么时候使用对偶形式,这个问题没搞懂,清楚的希望能留言告诉我。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有 $n$ 种不同面额的硬币,每种硬币的数量无限。假设硬币面额为 $a_1,a_2,...,a_n$,现在要用这些硬币来找零 $m$ 元,求最少需要的硬币个数。 样例 输入:5,[1,2,5] 输出:2 算法1 (动态规划) $O(nm)$ 很明显,这是一道动态规划的问题。 设 $f[i][j]$ 为只考虑前 $i$ 种硬币,总面值为 $j$ 元时所需的最少硬币数。 显然,对于 $f[i][j]$,我们可以选择不取第 $i$ 种硬币,此时 $f[i][j]=f[i-1][j]$。也可以选择取第 $i$ 种硬币,此时 $f[i][j]=f[i][j-a_i]+1$。 于是,状态转移方程为: $$f[i][j]=\min(f[i-1][j],f[i][j-a_i]+1)$$ 注意,当 $j<a_i$ 时,显然不能取第 $i$ 种硬币,因此 $f[i][j]=f[i-1][j]$。 最终答案即为 $f[n][m]$。 时间复杂度 状态数为 $nm$,转移复杂度为 $O(1)$,故总时间复杂度为 $O(nm)$。 参考文献 无 C++ 代码 class Solution { public: int coinChange(vector<int>& coins, int amount) { int n = coins.size(); vector<vector<int>> f(n+1,vector<int>(amount+1,0x3f3f3f3f)); for(int i=0;i<=n;++i) f[i][0] = 0; for(int i=1;i<=n;++i){ for(int j=1;j<=amount;++j){ if(j<coins[i-1]) f[i][j] = f[i-1][j]; else f[i][j] = min(f[i-1][j],f[i][j-coins[i-1]]+1); } } return f[n][amount]>=0x3f3f3f3f?-1:f[n][amount]; } }; Java 代码 class Solution { public int coinChange(int[] coins, int amount) { int n = coins.length; int[][] f = new int[n+1][amount+1]; for(int i=0;i<=n;++i) f[i][0] = 0; for(int i=1;i<=n;++i){ for(int j=1;j<=amount;++j){ if(j<coins[i-1]) f[i][j] = f[i-1][j]; else f[i][j] = Math.min(f[i-1][j],f[i][j-coins[i-1]]+1); } } return f[n][amount]>=0x3f3f3f3f?-1:f[n][amount]; } }

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值