【BFS】 [蓝桥杯2018决赛]迷宫与陷阱

本文介绍了一道关于迷宫游戏的编程题,玩家小明需要从左上角到达右下角,途中遇到墙壁'#'不可通过,陷阱'X'在无敌状态下可通过,无敌道具'%'可获得K步无敌。通过扩展BFS算法,使用三维数组记录当前位置和无敌状态,找出最短路径。题目提供了样例输入和输出,并解析了解题思路和代码实现。
摘要由CSDN通过智能技术生成

题目描述

小明在玩一款迷宫游戏,在游戏中他要控制自己的角色离开一间由NxN个格子组成的2D迷宫。
小明的起始位置在左上角,他需要到达右下角的格子才能离开迷宫。
每一步,他可以移动到上下左右相邻的格子中(前提是目标格子可以经过)。
迷宫中有些格子小明可以经过,我们用’.‘表示;
有些格子是墙壁,小明不能经过,我们用’#‘表示。
此外,有些格子上有陷阱,我们用’X’表示。除非小明处于无敌状态,否则不能经过。
有些格子上有无敌道具,我们用’%'表示。
当小明第一次到达该格子时,自动获得无敌状态,无敌状态会持续K步。
之后如果再次到达该格子不会获得无敌状态了。
处于无敌状态时,可以经过有陷阱的格子,但是不会拆除/毁坏陷阱,即陷阱仍会阻止没有无敌状态的角色经过。
给定迷宫,请你计算小明最少经过几步可以离开迷宫

输入
输入包含多组测试数据,对于每组测试数据:
第一行包含两个整数N和K。 (1 <= N <= 1000 1 <= K <= 10)
以下N行包含一个NxN的矩阵。矩阵保证左上角和右下角是’.’。

输出
对于每组测试数据输出一行包含一个整数表示答案。
如果小明不能离开迷宫,输出-1。

样例输入
5 3
…XX
##%#.
…#.
.###.

5 1
…XX
##%#.
…#.
.###.

样例输出
10
12

思路

求最短路肯定用BFS
不过这个BFS和一般的BFS就差在了它无敌的时候,有时候重复走某些格子可能会形成更短的路径,因此这道题只需要把原本二维标记数组vis[n][n]变成三维的vis[n][n][11]就可以了,vis[x][y][z]用以记录在坐标(x,y)时,无敌步数还剩z步的情况

代码

#include<bits/stdc++.h>
#define N 1010
#define ll long long
#define mod 1000000007
using namespace std;
int n, k, dx[] = {0, 0, 1, -1}, dy[] = {1, -1, 0, 0}, vis[N][N][11];
char a[N][N];

struct node{
    //p用来记录剩下的无敌步数
    int x, y, p;

    node(int _x, int _y, int _p):x(_x), y(_y), p(_p){}
};

int main(){
    while(cin>>n>>k){
        int ans = 0;
        memset(vis, 0, sizeof(vis));
        for(int i=0; i<n; i++){
            for(int j=0; j<n; j++){
                cin>>a[i][j];
            }
        }

        vis[0][0][0] = 1;
        queue<node> que;
        que.push(node(0, 0, 0));

        while(que.size()){
            int m = que.size();
            int flag = 0;

            while(m--){
                node t = que.front();
                que.pop();

                int x = t.x, y = t.y, p = t.p;
                if((x==n-1) && (y==n-1)){
                    flag = 1;
                    break;
                }

                for(int i=0; i<4; i++){
                    int nx = x+dx[i], ny = y+dy[i];

                    if(nx>=0 && nx<n && ny>=0 && ny<n && vis[nx][ny][p]==0){
                        if(a[nx][ny]=='#')
                            continue;
                        else if(a[nx][ny]=='X'){
                            if(p==0)
                                continue;
                            else{
                                vis[nx][ny][p] = 1;
                                que.push(node(nx, ny, p-1));
                            }
                        }
                        else if(a[nx][ny]=='.'){
                            vis[nx][ny][p] = 1;
                            que.push(node(nx, ny, p>0?p-1:0));
                        }
                        else if(a[nx][ny]=='%'){
                            a[nx][ny]=='.';
                            vis[nx][ny][p] = 1;
                            que.push(node(nx, ny, k));
                        }
                    }
                }
            }
            if(flag)
                break;

            ans++;
        }
        cout<<ans<<endl;
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值