题目描述
小明在玩一款迷宫游戏,在游戏中他要控制自己的角色离开一间由NxN个格子组成的2D迷宫。
小明的起始位置在左上角,他需要到达右下角的格子才能离开迷宫。
每一步,他可以移动到上下左右相邻的格子中(前提是目标格子可以经过)。
迷宫中有些格子小明可以经过,我们用’.‘表示;
有些格子是墙壁,小明不能经过,我们用’#‘表示。
此外,有些格子上有陷阱,我们用’X’表示。除非小明处于无敌状态,否则不能经过。
有些格子上有无敌道具,我们用’%'表示。
当小明第一次到达该格子时,自动获得无敌状态,无敌状态会持续K步。
之后如果再次到达该格子不会获得无敌状态了。
处于无敌状态时,可以经过有陷阱的格子,但是不会拆除/毁坏陷阱,即陷阱仍会阻止没有无敌状态的角色经过。
给定迷宫,请你计算小明最少经过几步可以离开迷宫
输入
输入包含多组测试数据,对于每组测试数据:
第一行包含两个整数N和K。 (1 <= N <= 1000 1 <= K <= 10)
以下N行包含一个NxN的矩阵。矩阵保证左上角和右下角是’.’。
输出
对于每组测试数据输出一行包含一个整数表示答案。
如果小明不能离开迷宫,输出-1。
样例输入
5 3
…XX
##%#.
…#.
.###.
…
5 1
…XX
##%#.
…#.
.###.
…
样例输出
10
12
思路
求最短路肯定用BFS
不过这个BFS和一般的BFS就差在了它无敌的时候,有时候重复走某些格子可能会形成更短的路径,因此这道题只需要把原本二维标记数组vis[n][n]变成三维的vis[n][n][11]就可以了,vis[x][y][z]用以记录在坐标(x,y)时,无敌步数还剩z步的情况
代码
#include<bits/stdc++.h>
#define N 1010
#define ll long long
#define mod 1000000007
using namespace std;
int n, k, dx[] = {0, 0, 1, -1}, dy[] = {1, -1, 0, 0}, vis[N][N][11];
char a[N][N];
struct node{
//p用来记录剩下的无敌步数
int x, y, p;
node(int _x, int _y, int _p):x(_x), y(_y), p(_p){}
};
int main(){
while(cin>>n>>k){
int ans = 0;
memset(vis, 0, sizeof(vis));
for(int i=0; i<n; i++){
for(int j=0; j<n; j++){
cin>>a[i][j];
}
}
vis[0][0][0] = 1;
queue<node> que;
que.push(node(0, 0, 0));
while(que.size()){
int m = que.size();
int flag = 0;
while(m--){
node t = que.front();
que.pop();
int x = t.x, y = t.y, p = t.p;
if((x==n-1) && (y==n-1)){
flag = 1;
break;
}
for(int i=0; i<4; i++){
int nx = x+dx[i], ny = y+dy[i];
if(nx>=0 && nx<n && ny>=0 && ny<n && vis[nx][ny][p]==0){
if(a[nx][ny]=='#')
continue;
else if(a[nx][ny]=='X'){
if(p==0)
continue;
else{
vis[nx][ny][p] = 1;
que.push(node(nx, ny, p-1));
}
}
else if(a[nx][ny]=='.'){
vis[nx][ny][p] = 1;
que.push(node(nx, ny, p>0?p-1:0));
}
else if(a[nx][ny]=='%'){
a[nx][ny]=='.';
vis[nx][ny][p] = 1;
que.push(node(nx, ny, k));
}
}
}
}
if(flag)
break;
ans++;
}
cout<<ans<<endl;
}
return 0;
}