[USACO1.5][IOI1994]数字三角形 Number Triangles
题目描述
观察下面的数字金字塔。
写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以走到左下方的点也可以到达右下方的点。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
在上面的样例中,从 7 → 3 → 8 → 7 → 5 7 \to 3 \to 8 \to 7 \to 5 7→3→8→7→5 的路径产生了最大
输入格式
第一个行一个正整数 r r r ,表示行的数目。
后面每行为这个数字金字塔特定行包含的整数。
输出格式
单独的一行,包含那个可能得到的最大的和。
样例 #1
样例输入 #1
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
样例输出 #1
30
提示
【数据范围】
对于
100
%
100\%
100% 的数据,
1
≤
r
≤
1000
1\le r \le 1000
1≤r≤1000,所有输入在
[
0
,
100
]
[0,100]
[0,100] 范围内。
题目翻译来自NOCOW。
USACO Training Section 1.5
IOI1994 Day1T1
所需变量
int r;//代表行数
int arr[1005][1005];//用于接收每行每个数
int L[2][1005] = {0};//每行不断交替存储其最大值
int i,j;//循环变量
思路:因为我们要找到最大值的一条路,我们不妨不断从下面往上判断,每次将最大值都存储起来,然后不断累加上去得到得到最大值!
首先就是将最底下那行前部赋值给L数组,因为最底下那行我们也不知道谁可能会被排除!
for(i = r-1;i>=0;--i){
L[(r-1)%2][i] = arr[r-1][i];
}
得到当前的最大值行后就是往上一行判断,看目前这个数是加上左下那个数更大还是右下那个数更大,将加上后的数判断,将更大的那个数赋值给当前的L数组的另外一行!
for(i = r-2;i>=0;--i){
for(j = 0;j<=i;++j){
L[i%2][j] = arr[i][j];
L[i%2][j] += L[(i+1)%2][j]>L[(i+1)%2][j+1]?L[(i+1)%2][j]:L[(i+1)%2][j+1];
}
}
不断迭代下去我们最上面那个数就是我们要求的最大值!也就是我们找到最大值!
该算法本人认为比较优,如果有更好的想法,欢迎q我!
完整代码如下(编译器是dev,语言是C语言):
#include<iostream>
using namespace std;
int main(){
int r,arr[1005][1005],L[2][1005] = {0},temp,i,j;
cin>>r;
for(i = 0;i<r;i++){
for(j = 0;j<=i;j++){
cin>>arr[i][j];
}
}
for(i = r-1;i>=0;--i){
L[(r-1)%2][i] = arr[r-1][i];
}
for(i = r-2;i>=0;--i){
for(j = 0;j<=i;++j){
L[i%2][j] = arr[i][j];
L[i%2][j] += L[(i+1)%2][j]>L[(i+1)%2][j+1]?L[(i+1)%2][j]:L[(i+1)%2][j+1];
}
}
cout<<L[0][0]<<endl;
return 0;
}