先列参考资料:
- AI-based computer-aided diagnosis (AI-CAD): the latest review to read first - 2020
- 谷歌自曝医疗AI临床结果不佳:实验室丰满,临床骨感 - 2020-04
- A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging - 2019
- 吴博:目标检测集成框架在医学图像 AI 辅助分析中的应用
正文
计算机辅助诊断(CADX)是一种跨学科技术,利用计算机视觉和人工智能会进行医学图像处理(通常为放射性和病理图像)以识别疾病。医学领域的成像分析非常重要,因为图像是进行任何疾病的早期诊断的基本方法,而且成像并不需要伤害人体。
计算机辅助诊断(CADx)和计算机辅助检测(CADe)都可以称为CAD,这两个概念可能会被混淆。两者的不同之处在于,前者指的是疾病的分类、识别和预测,而后者是检测图像中的病变。就结果而言,CADe属于医学图像分析,更接近目标检测。
CAD & AI
CAD研究进展与AI技术进步关系很大。如图1所示,随着第三次人工智能(AI)的爆发,医学图像的CAD领域也开始发生变化。深度学习的创始人亨顿在2016年的某次国际会议上就曾表示,“深度学习将在五年内达到放射学专家的水平”,这在某些领域已经实现了。

传统的CAD系统解决了诸如预处理,分割,特征提取和分类的几个步骤,如图2(a)所示。深度学习的优势在于它可以通过其学习过程自行创建特征。考虑到医生对这些特征的疑虑,可解释AI(explainable AI, XAI),包括热点图(heat map)等内容,AI相关的研究人员正在持续研究。

接下来我将介绍AI-CAD的几个有趣的例子,其中有些的诊断水平与医生的相当甚至更好。
眼底图像 Fundus photographs
眼底照片的质量筛选不仅可用于诊断青光眼等眼部疾病,还可以诊断糖尿病视网膜病变和高血压视网膜病变。
2018年3月,谷歌发布了一篇有趣的论文,其中他们从约300,000名患者收集了眼底图像和其他医疗数据,并使用深层学习的方法处理眼底图像,进而预测心脏病。虽然临床应用中仍存在一些问题,例如图像质量达不到标准、医院通信网络较差导致图像上传过慢,但它们的算法已经在如此大的数据集中达到了专家水平,可以想象这一AI算法的实际落地并不遥远。
皮肤病学图像 Dermatology images
AI皮肤癌症诊断的水平甚至高于医生。2018年发表的一篇名为“人类 VS. 机器”的论文中,研究人员比较了AI与皮肤科医生在超过100,000张图像中诊断黑素瘤的准确性,得分分别是为95%和87%(AI vs. 皮肤科医生)。
(偷懒了…其他的应用可以去看参考资料1)
此外,AI-CAD在乳腺癌筛查和胸片上的主要胸部疾病方面诊断方面也表现出色。然而,CAD在临床应用中仍然需要解决以下问题:
- 数据在内容、数量和质量方面存在问题
- 数据是否具有统计学意义
- 没有大规模的临床实践方面的证据
- 深度学习的黑匣子问题(不具有可解释性)
这意味着,仍然需要在新的图像重建方法、自动图像标记方法、可解释AI和定制的模型架构等方面的努力。