Resolution Enhancement for Forward-Looking Imaging of Airborne Multichannel Radar via Space–Time Reiterative Superresolution
1. 研究目标与产业意义
1.1 研究目标
论文旨在解决机载多通道雷达前视成像(Forward-Looking Imaging, FLI)中跨分辨率(Cross-Range Resolution)不足的问题。传统方法(如SAR、DBS)因前视区域多普勒梯度低、对称地形多普勒模糊等问题难以有效成像,而真实孔径雷达(RAR)受限于瑞利分辨率。论文提出一种空时迭代超分辨率(Space-Time Reiterative Superresolution, ST-RISR)方法,通过结合空间和时间维度的采样与处理,提升成像分辨率。
1.2 实际问题与产业意义
- 实际问题:前视成像在复杂地形检测、飞机盲降等场景至关重要,但传统方法无法满足高分辨率需求。
- 产业意义:提升分辨率可增强雷达在恶劣天气下的环境感知能力,为无人机、航空器导航等提供更精确的成像支持,推动雷达技术在军事、民用领域的应用。
2. 创新方法:ST-RISR模型与关键公式
2.1 空时信号模型
论文首先建立空时采样模型,将空间(多通道接收)与时间(慢时域相干脉冲)维度结合。关键公式如下:
2.1.1 接收信号模型
接收信号模型考虑平台运动与天线扫描,离散接收信号表示为:
s ( n , m ) = ∑ q = 1 Q σ ( θ q ) h ( θ q − θ ˉ k ) e j 2 π f ˉ d ( θ q ) n e − j 2 π f ˉ s ( θ q ) m s(n, m)=\sum_{q=1}^Q\sigma\left(\theta_q\right) h\left(\theta_q-\bar{\theta}_k\right) e^{j 2\pi\bar{f}_d\left(\theta_q\right) n} e^{-j 2\pi\bar{f}_s\left(\theta_q\right) m} s(n,m)=q=1∑Qσ(θq)h(θq−θˉk)ej2πfˉd(θq)ne−j2πfˉs(θq)m
其中, f ˉ d \bar{f}_d fˉd和 f ˉ s \bar{f}_s fˉ